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ABSTRACT

Two different viscous-inviscid interaction schemes have been

developed for the analysis of steady, turbulent, transonic, separated

flows over axisymmetric bodies. The viscous and inviscid solutions are

coupled through the displacement concept using a transpiration velocity

approach. In the semi-inverse interaction scheme, the viscous and

inviscid equations are solved in an explicitly separate manner and the

displacement thickness distribution is iteratively updated by a simple

coupling algorithm. In the simultaneous interaction method, local

solutions of viscous and inviscid equations are treated simultaneously,

and the displacement thickness is treated as an unknown and is obtained

as a part of the solution through a global iteration procedure.

The inviscid flow region is described by a direct finite-difference

solution of a velocity potential equation in conservative form. The

potential equation is solved on a numerically generated mesh by an

approximate factorization (AF2) scheme in the semi-inverse interaction

method and by a successive line overrelaxation (SLOR) scheme in the

simultaneous interaction method.

The boundary-layer equations are used for the viscous flow region.

The continuity and momentum equations are solved inversely in a coupled

manner using a fully implicit finite-difference scheme. The energy

equation is solved uncoupled. The FLARE approximation is used in the

reversed flow region and its effectiveness is studied by using a

windward differencing scheme.
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xiv

The two-layer algebraic turbulence model proposed by Cebeci and

Smith (1974) and a new one-half equation turbulence model proposed by

Johnson and King (1985) are utilized to describe the Reynolds stress in

turbulent flow calculations. Parameters affecting the convergence rate

of the interaction procedure are discussed. The calculation schemes are

evaluated by studying i) an incompressible, laminar, separated flow over

a flat plate with a trough, 2) a turbulent, transonic, separated flow

over an axisymmetric boattail with a solid cylindrical plume simulator,

3) a turbulent, transonic, separated flow over an axisymmetric bump

attached to a circular cylinder. The predictions are compared with

experimental data and other available numerical results. The

simultaneous interaction method becomes more efficient and reliable than

the semi-inverse method as the separation size grows. The prediction

obtained by the Johnson-King model is generally in good agreement with

the measurements, but disagreement is noticeable after the reattachment

point.
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I. INTRODUCTION

A. Overview of the Problem

Encouraging progress has been made in recent years in the

prediction of complex flow fields. However, much more work needs to be

done to develop and verify reliable predictive schemes in several areas

of application. One of the difficult problems in present day

aerodynamics is the accurate prediction of complex turbulent flows

occurring in the transonic speed regime. Transonic flows occur in many

important aerodynamic applications of current technological interest

including flows over airfoil and engine components. This is largely

because many modern commercial and military aircraft cruise very

efficiently at transonic speeds.

While transonic flow fields contain a variety of interesting and

unique characteristics, they are especially characterized by the two

main complicating features of mixed subsonic/supersonic flow and

substantial viscous effects. In a typical transonic flow, a subsonic

freestream is accelerated over a convex body surface to form an embedded

region of supersonic flow adjacent to the body surface. This supersonic

region is generally terminated by a shock wave that recompresses the

flow as the flow returns to the subsonic speed. The strength and extent

of the shock wave increase with freestream Mach number. From a

mathematical point of view, the transonic flow must be described by a

nonlinear equation or set of equations of mixed elliptic/hyperbolic

type, because a subsonic flow region is described by an elliptic



equation and supersonic region is described by a hyperbolic equation.

The boundaries between the elliptic and hyperbolic regions must be

obtained as a part of the solution.

Viscous effects are also important in the transonic flow. The

interaction between a viscous (or boundary) layer and a shock wave is a

very complicated phenomenon. The principal interaction between the

shock waveand the boundary layer arises from the displacement thickness

effect which leads to a thickened effective body causing significant

changes to the surface pressures and forces. In the inviscid flow

region, the pressure increases discontinuously across the shock wave.

However, in the inner part of the boundary layer which has subsonic

velocity, this abrupt increase of the pressure cannot occur. Instead,

the overall pressure rise takes place over several boundary-layer

thicknesses. Although the shock wave penetrates the boundary layer and

generates a significant normal pressure gradient, it is considerably

weakenedand finally vanishes as it reaches the sonic line in the lower

part of the boundary layer. The flow under the sonic line is retarded

by this adverse pressure gradient and boundary layer is substantially

thickened.

If the strength of retarding influences is sufficiently strong, the

boundary layer separates from the body surface increasing the streamwise

spread of the pressure rise. A typical exampleof the transonic flow

with the interaction between the normal shock wave and the boundary

layer is schematically illustrated in Figure i. Whenthe overall

pressure rise is sufficient to cause separation, an outgoing weak
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FIGURE i. Transonic flow field through the interaction



compression wave is generated. Although the compression wave downstream

of the separation is barely perceptible, it joins the nearly normal

strong shock some distance outside the boundary layer. To achieve

continuity of pressure and flow direction downstream of this

intersection, an incoming weak oblique shock is generated, and a vortex

sheet with a rapid entropy rise across it runs downstream from the

intersection. Because of a nonuniform entropy increase across the shock

wave, the flow outside the boundary layer immediately downstream of the

weak trailing shock is still supersonic, but with further pressure rise

as the flow continues downstream the supersonic tongue diminishes and

finally vanishes (Green, 1970).

The presence of separation can significantly affect the entire flow

field. For example, the existence of separation on an airfoil can

change the lift and drag coefficients considerably so as to degrade the

control effectiveness of the aircraft. Also, the flow reattachment

gives rise to heating rates which can far exceed those for an attached

boundary layer. Therefore, the mechanism of the separation and

reattachment in transonic flow fields has received a great deal of

attention in the aerodynamic design process, though it is still far from

being fully understood. Generally, the process of separation is

believed to depend only on the properties of the approaching flow

stream. However, the flow inside the separation bubble is thought to be

subject to both upstream and downstream influences, thus having elliptic

characteristics. The size of a separation bubble usually depends on the

magnitude of the pressure rise, the nature of the disturbance which



causes it, the Machnumber, and the Reynolds numberof the initial flow

(Green, 1970). However, the size of separation caused by a normal shock

wave is so influenced by the interaction with the far field that a

correlation of separation size with the main flow parameters is very

difficult to obtain. Such an interaction process is complex and our

present understanding of this phenomenonis very incomplete. ,

The complexity of the governing equations that need to be solved to

predict transonic flows depends on the flow phenomena in question. If

the shock wave is sufficiently weak that the flow does not separate, the

viscous effects are often insignificant. In this case, a fairly

accurate description of the pressure distribution can be obtained from

solving the equations for inviscid flow only, perhaps even the transonic

small disturbance (TSD) form of the equations. If the shock wave is

strong enough to cause separation, the governing equations must include

viscous effects. The optimum (in terms of cost and accuracy)

computational strategy for the latter case has not been established.

The broad classes of competing methods can be labeled as global or

zonal.

In the global approach, no assumptions are necessary about the type

or nature of interaction in the flow field. All regions are computed

simultaneously with a single set of equations, such as the Navier-Stokes

equations. The Navier-Stokes equations are generally regarded as the

basic equations describing most flow phenomena of practical aerodynamic

interest. The physical phenomena encountered in transonic flows,

including mixed subsonic/supersonic flow, shock waves, boundary layer,
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separation and turbulence can be mathematically represented by the time-

dependentNavier-Stokes equations. The numerical solution of the time-

dependentNavier-Stokes equations for practical turbulent flow problems

is, however, presently not feasible with existing computers due to the

small characteristic length and time scales of the turbulent motion.

Thus, someform of averaging of the governing equations and turbulence

modeling are required. Current practice, as well as much research in

turbulent flows, is based on the use of the time-averaged Navier-Stokes

(Reynolds) equations with turbulence modeling. Often, the predictions

based on this approach have failed to predict flow details accurately,

but shortcomings are frequently attributed to the grid arrangement or

the turbulence model.

In the zonal approach, the flow region is divided into subregions

which have distinct flow characteristics and each subregion is described

by an appropriately reduced set of governing equations. As in many flow

situations, the transonic flow field can be divided into the thin shear

(boundary) layer near solid boundaries and inviscid flow elsewhere,

assumingthat the Reynolds number is sufficiently large. Most commonly,

the Euler equations or the potential equation have been used for the

inviscid flow region and either an integral or finite-difference

representation of the boundary-layer equations for the viscous flow

region. It is often possible to solve these two sets of equations

interactively in a consistent mannerusing what has becomeknownas the

viscous-inviscid interaction approach. Applications of viscous-inviscid

interaction schemesbased on the above idea to transonic turbulent



separated flows can be found in numerousworks. Predictions based on

this approach generally comparewell with the solutions based on the

time-averaged Navier-Stokes equations, but solutions from both

approaches often exhibit disagreement with experimental measurementsfor

transonic separated turbulent flows. These discrepancies in solutions

based on the viscous-inviscid interaction approach have been attributed

to inadequate turbulence modeling or errors associated with the standard

boundary-layer approximation which neglects the normal pressure gradient

across the boundary layer.

The accuracy and reliability of turbulent flow predictions are very

much constrained by the accuracy and generality of the turbulence model

used to evaluate the Reynolds stresses and heat flux quantities. To a

large extent, turbulence modeling is the pacing item in the quest for

improved predictions. Despite considerable research effort, completely

satisfactory turbulence models have not been identified for many complex

flows, especially those containing regions of flow reversal. The lack

of generality is a major shortcoming of turbulence models. Many of the

studies for viscous transonic flows have used variants of a simple

algebraic turbulence model (Deiwert, 1976; Baldwin and Lomax, 1978;

Carter, 1981). Recently, more complex models which solve additional

differential equations for turbulence parameters have been used.

Surprisingly, complex models that show better overall predictions in

many incompressible cases do not provide significant improvement over

simple algebraic models for transonic flows with large separation.
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A long range goal of computational fluid dynamics is the

development of methods which are predictive; that is, methods which can

be used with reasonable confidence in the absence of confirming

experimental data. To support this goal, the development of turbulence

models with reasonable generality could be helpful. Until this has been

achieved, the identification of models which work well for particular

classes of flows (with their accompanying range of applicability and

limitations) would prove useful for design purposes.

The present study deals with both computational and turbulence

modeling aspects of predicting transonic flows with strong interaction.

An objective of the study was to advance the state of the art in

turbulent flow prediction and to enhance present understanding regarding

the range of applicability and limitations of computational approaches

and turbulence models for flows containing separated regions.

B. Literature Review

The study of transonic aerodynamics has a long history and a

considerable amount of research has been done both experimentally and

theoretically. The present review is intended to provide an indication

of the state of the art of transonic aerodynamics. It is by no means

all inclusive. The emphasis was put on works of two-dimensional

transonic flows with strong interaction between the shock wave and the

boundary layer, which is closely related to the present study.

Experimental studies and analytical works are discussed separately for

convenience. A detailed historical review of transonic flow research



can be found in an article by Spreiter (1982).

i. Experimental work

Interest in transonic flows was developed as early as the 1900s,

but realistic experiments only began in the 1940s because of technical

difficulties in obtaining transonic speeds. However, at present,

experimental measurements over a variety of flow conditions and body

configurations are available. Still, only a limited number of

experimental investigations provide extensive, quantitative measurements

of flow properties in the boundary layer which are necessary for

understanding the mechanism of the interaction between a shock wave and

a boundary layer.

Naturally, most of the transonic flow experiments have focused on

airfoil-like geometries. Some of the important works are given below.

Liepmann (1946) performed an experimental study for the transonic flow

past a 12% circular arc airfoil to examine the effect of the boundary

layer upon the shock wave pattern and pressure distribution.

Measurements indicated that a change of the boundary layer from the

laminar to the turbulent regime resulted in a marked change in shock

wave pattern and surface pressure distribution at the same freestream

Hach number. Also, the pressure gradient normal to the boundary layer

was found to be of the same order as the one parallel to the boundary

layer near the base of the shock wave.

layer displacement thickness increased rapidly at separation so that the

surface pressure distribution was significantly modified from what would
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be predicted from pure inviscid analysis. According to the measurements

of Seddon (1960), the incident normal shock is bifurcated into a strong

oblique shock and a weak rear shock due to the viscous interaction.

Following the trailing weak rear shock, the supersonic stream is

embedded in the subsonic region just outside the boundary layer. In the

boundary layer, the flow was shown to undergo successively the three

processes of shock compression, displacement and rehabilitation.

Pearcey et al. (1968) carefully examined the scale effects in wind

tunnel tests. They suggested that the applicability of the flow model

developed on shock induced separation of turbulent boundary layers on an

airfoil to full scale behavior could be restricted. Restrictions arise

because the trailing edge does not include the interaction that

sometimes occurs between the disturbance at the foot of the shock and a

subsonic-type rear separation in the continuous adverse gradient further

downstream.

McDevitt et al. (1976) performed an experimental study for the

transonic flow over an 18% thick circular-arc airfoil. By varying the

peak local Mach number from about i to 1.4, both weak and strong

interactions were observed. Shock induced separation was observed at

M = 0.78, and the effect of changes in Reynolds number on the flow

fie_d was appreciable at low Reynolds numbers, but this effect was small

for Reynolds numbers above i x 107 based on the airfoil chord length.

For freestream Mach numbers ranging from about 0.76 to 0.78, the airfoil

flow field was found to be unsteady. Comparisons of the measurements

and numerical solutions of the Navier-Stokes equations suggested that
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the development of a more accurate turbulence model was necessary when

the interaction is strong and extensive separation is present. The same

flow model was tested by Levy (1978) and Seegmiller et al. (1978) at a

fixed Reynolds number and the same unsteady motion was observed at the

limited range of freestream Mach numbers indicated above.

Johnson and Bachalo (1980) reported an experimental study for a

symmetrical NACA 64A010 airfoil at transonic conditions. Measurements

were obtained with the freestream Mach number fixed at 0.8 for three

different angles of attack to vary the intensity of shock wave/boundary

layer interaction. The effect of varying Reynolds number was found to

be very small because the transition strip placed at the leading edge

nullified the effects of natural transition, thus reducing the

sensitivity to Reynolds number. As the angle of attack was increased,

the boundary-layer thickness on the airfoil's upper surface

significantly increased and the shock wave moved forward. The turbulent

flow measurements revealed that the turbulence fluctuations attained

equilibrium with the local mean flow more rapidly than previously

expected. On this basis, it was suggested that improved turbulence

modeling was needed at or very near the separation point and that an

algebraic turbulence model based on the local equilibrium assumption can

be used downstream of the separation point.

One of the most heavily investigated transonic flow configurations

other than the airfoil configuration is the cone-cylinder boattailed

afterbody. Shrewsbury (1968) studied the effect of boattail juncture

shape on afterbody drag at transonic speed. He tested eight different
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afterbody configurations with cylindrical plume simulators for

freestream Machnumbers ranging from 0.56 to 1.0 and angles of incidence

ranging from 0 to 8 degrees. The experiment was performed with both

rounded and sharp sting junctures. A sharp juncture was found to result

in a slower pressure recovery on the afterbody. This experiment

included measurementsfor three-dimensional separated flows.

Reubush(1974) conducted an experimental investigation for a series

of eight nacelle-mounted isolated circular-arc boattailed afterbodies

with both cylindrical plume simulators and real jet exhaust plumes to

determine the effectiveness of utilizing solid circular cylinders to

simulate jet exhaust plumes. The experiment was conducted at freestream

Machnumbersranging from 0.4 to 1.3 at an angle of attack of 0 degrees

with various ratios of simulator diameter to nozzle-exit diameter.

Comparisonsof the measurementsgenerally indicated that use of one of

the larger diameter simulators would approximately result in pressure

coefficient distributions and drag coefficients of real jet exhaust

plumes at all Machnumbers. A more detailed discussion of these

experiments will be given in a later section.

Later, an investigation was conducted by Reubushand Putnam(1976)

to determine the effects of variations in Reynolds numberon the

pressure and drag of similar isolated boattails. They found that as the

Reynolds numberwas increased, the boattail static pressure coefficients

in the expansion region of the boattail becamemore negative, although

those pressure coefficients in the recompression region of the boattails

becamemorepositive. These two trends were found to be compensating
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and there was only a small effect of Reynolds number. Abeyounis (1977)

measured the separation point using an oil-flow technique for the same

circular-arc boattails, and suggested a correlation between the

separation point and the Mach number, but the reattachment point was not

measured.

Benek (1979) experimentally investigated transonic flows over two

different boattail configurations with solid cylindrical plume

simulators for freestream Math numbers ranging from 0.6 to 1.3 using a

laser doppler velocimeter. The two configurations differed in

smoothness of the boattail so that one produced a fully attached flow

and the other produced substantial separation.

There have been several experimental studies conducted on the flow

field over circular-arc bump attached to a plane wall or cylinder. This

configuration has the advantage of generating thick, extensive

separation compared to the airfoil geometry so that more information can

be obtained about the turbulent boundary-layer flow in the immediate

vicinity of the separation point.

Alber et al. (1973) measured the turbulent transonic separated flow

generated on the rear portion of a two-dimensional circular-arc model

mounted on the wind tunnel floor using pitot probes. By varying the

freestream Mach number from 0.3 to 0.8, two different types of

separation were tested; pressure gradient induced separation and shock

wave induced separation. At the lower Math numbers, no shock was

observed and separation induced by the pressure gradient appeared at the

aft portion of the bump. As the Mach number was increased up to 1.32,
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the separation point moved upstream and the reattachment point moved

downstream. Shock induced separation was observed as the peak local

Mach number was increased to 1.34. As the Mach number was increased

further, the shock and the separation and reattachment points moved

downstream. Velocity profiles downstream of the shock wave were also

found to be quite different in the pressure gradient induced separation

and shock induced separation cases. However, the accuracy of the

measurements of velocity profiles in the reversed flow region is

uncertain due to possible errors associated with the measuring

technique.

Using a Math Zehnder interferometry, Delery et al. (1976) studied a

separated flow with strong viscous-inviscid interaction in a two-

dimensional transonic channel in which a 12% thick circular bump profile

was placed on the lower channel wall. Their results clearly indicated

that the interaction with the shock wave brought on a noticeable

thickening of the boundary layer and a noticeable distortion of the

velocity distribution. They also found that the appearance of

separation depended on the shock intensity and the velocity profile

shape.

Delery (1983) investigated flows resulting from the interaction of

shock wave and turbulent boundary layer occurring in a two-dimensional

transonic channel. The turbulent boundary layer was developed on the

channel walls and the bumps were placed on both upper and lower channel

wall to accelerate the flow to supersonic speed. It was found that the

first part of the interaction process entailed a very large production
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of turbulence having a very strong anisotropy. In this zone, the normal

stresses in the momentum and turbulent energy equations were considered

to be important. He reported that the downstream relaxation toward a

new equilibrium state was a very gradual process due to the long

lifetime of the large structures which were formed in the region of

intense turbulence production.

Bachalo and Johnson (1979) performed an experimental study for an

axisymmetric flow model which consisted of an annular circular-arc bump

affixed to a circular cylinder aligned with the flow direction.

Measurements were obtained in the NASA Ames 2 x 2 foot transonic wind

tunnel at freestream Mach number of 0.875 using a laser velocimeter.

The separation and reattachment points were determined using oii flow

visualization. The same bump configuration was tested by Horstman and

Johnson (1984) at Mach numbers raging from 0.4 to 0.925 in the NASA Ames

6 x 6 foot supersonic wind tunnel where the influence of the tunnel

walls would be much smaller than in the previous smaller wind tunnel.

For the same test conditions, measurements of the surface pressure

distribution obtained in these two wind tunnels were almost identical

except that the shock location obtained in the larger tunnel was always

about 1% chord length upstream of that in the smaller wind tunnel. As

the Mach number was increased up to 0.8, the flow remained subcritical,

but a small region of separation was observed. At Math number slightly

over 0.8, a shock wave was formed. As the Math number was increased

further, the shock location remained almost the same, but the separated

region grew rapidly. More detailed observations will be given in a
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later section.

2. Analytical work

a. General Since transonic flow is governed by a nonlinear

equation or set of equations, analytical studies were very limited in

the early days of transonic aerodynamics. Therefore, early studies of

transonic flows depended very heavily on experiments and there were only

few theoretical results. More recently, due to the general availability

of digital computers, many numerical studies have been conducted and

these have accelerated understanding of transonic phenomena.

Numerical studies of transonic flows can generally be divided into

two categories depending on whether viscous effects are accounted for or

not. Early studies were typified by the solution of the inviscid subset

of the Navier-Stokes equations, such as the transonic small disturbance

equation solved by Murman and Cole (1971) for two-dimensional flow and

Bailey and Ballhaus (1972) for three-dimensional flow, the potential

equation, solved by Jameson (1974), and the Euler equations, solved by

Magnus and Yoshihara (1970). Comprehensive reviews concerning this

approach can be found in articles by Yoshihara and Spee (1982), Nixon

and Kerlick (1982), Hoist (1983), and South (1985). These fully

inviscid analyses often produce approximate descriptions of the

transonic flow field including the pressure distribution and shock wave

location. However, they fail to provide an accurate description when

separation occurs due to shock wave penetration or a strong adverse

pressure gradient. As observed in many experiments, viscous effects in

transonic separated flows are so significant that a fully inviscid
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analysis cannot be used to obtain a reasonable solution in such flows.

The other category consists of numerical methods which include

viscous effects. Such methods are usually divided according to two

approaches. The first approach is based on the full set or reduced

subset of the Navier-Stokes equations and the other is the zonal

approach based on the coupling of the viscous and inviscid subsets of

the Navier-Stokes equations (the visc0us-inviscid interaction method).

b. Navier-Stokes solutions-general Examples of the first

approach which generally uses the time dependent Reynolds-averaged or

mass-averaged Navier-Stokes equations can be found in numerous studies.

An informative review on this approach is contained in an article by

Mehta and Lomax (1982). Some of these studies were devoted to an

evaluation of the turbulence modeling, generally the algebraic model

with or without relaxation type modifications or one or two-equation

models, for shock wave/boundary layer interaction flows. Included in

such studies are Baldwin et al. (1975), Baldwin and Rose (1975), Deiwert

(1976), Viegas and Coakley (1977), Levy (1978), Viegas and Horstman

(1979), and Horstman (1983). Generally, higher-order turbulence models

such as two-equation models provided a better description of flow

details than the algebraic turbulence models. However, differences

between these two models became very small in flows with shock induced

separation and the overall predictions were in poor agreement with the

measurements.

Several studies also utilized a reduced set of equations that falls

between the full Navier-Stokes equations and the boundary-layer
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equations. Baldwin and Lomax (1978) applied a thin-layer approximation

to the Navier-Stokes equations. These equations are somewhat simpler

than the Navier-Stokes equations, but a substantial amount of computer

effort is still required to solve them. The parabolized Navier-Stokes

(PNS) equations have recently gained popularity in many flow

calculations (Rudman and Rubin, 1968) because of the use of a space

marching technique, but their application to transonic flow has been

rare. Recently, however, Khosla and Lai (1984) developed a global PNS

technique to calculate transonic separated flows.

c. Navier-Stokes solutions-boattails and bumps A more detailed

description of previous studies conducted with the above approaches on

flows of present interest, the boattail afterbody and bump

configurations, is given below. Holst (1977) and Swanson (1980) solved

the time-dependent, Reynolds-averaged Navier-Stokes equations using an

explicit finite-difference method for axisymmetric boattail flows

measured by Reubush (1974). Both studies used a two-layer algebraic

turbulence model with a relaxation formula to account for the

nonequilibrium effects of the interacted turbulent flow. Predictions

agreed much better with experimental data than results of equilibrium

turbulence models, but the predictions in the reversed flow region were

not satisfactory. This suggests that the improvement of the turbulence

modeling is needed especially in the separated flow region.

Deiwert (1981) used the thin-layer form of the Reynolds-averaged

Navier-Stokes equations, developed by Pulliam and Steger (1980), to

calculate flows over several different axisymmetric boattail



19

configurations experimentally tested by Shrewsbury (1968), Reubush

(1974) and Benek (1979). A two-layer algebraic turbulence model

introduced by Baldwin and Lomax (1978) was used. Results agreed well

qualitatively, but quantitatively some discrepancies were observed in

the separated flow region; surface pressure was overpredicted in the

pressure recovery region. These discrepancies were attributed to poor

turbulence modeling, effects of artificial viscosity, and the influence

of grid point distribution.

Khosla and Rubin (1983) applied a composite velocity formulation in

solving the Navier-Stokes equations for Reubush's boattail flow. This

formulation used a multiplicative composite of the appropriate velocity

representations for the inviscid and viscous flow regions. As a result,

the equations were structured so that far from the surface of the body

the continuity equation reduced to the potential equation and the

momentum equations led to the Bernoulli equation. Swanson et al. (1983)

extended this method to transonic flow calculations by using the

artificial compressibility method for embedded supersonic regions. A

two-layer algebraic turbulence model proposed by Cebeci and Smith (1974)

was used with the relaxation model suggested by Shang et al. (1976).

Results showed favorable agreement with experimental data but the

pressure was still overpredicted in the large separated flow region.

Solutions of the time-dependent, Reynolds-averaged Navier-Stokes

equations were obtained by Johnson et al. (1982) for the flow over an

axisymmetric bump attached to a cylinder, experimentally measured by

Bachalo and Johnson (1979). The two-equation (k-_) turbulence model
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proposed by Wilcox and Rubesin (1980) and the algebraic Cebeci-Smith

turbulence model were used. Even though the two-equation model resulted

in slightly better predictions than the Cebeci-Smith model, both models

produced essentially the same results. Particularly, the shock

locations predicted by both models were in poor agreement with the

measurements. The authors suggested that this large discrepancy was due

to the rapid increase in the turbulent shear stresses in the vicinity of

the shock.

Using the same Navier-Stokes equations, Horstman and Johnson (1984)

recalculated this flow for a wider range of freestream Mach numbers and

compared with their new measurements. At the outer boundary, freestream

conditions were assumed instead of the inviscid solid wall (slip)

boundary condition. They also used the two-equation (k-z) model of

Jones and Launder (1972) with a longitudinal curvature correction. The

change of the outer boundary condition resulted in a vast improvement in

calculated results, which indicated that the measurements were free from

effects of the wind tunnel wall. A slight improvement was observed by

using the k-_ turbulence model, but the pressure was still overpredicted

in the recovery region and the separated region was predicted very

poorly compared to experimental measurements. The computations showed

no separation for freestream Mach numbers up to 0.8, while the

experiment showed separation at all Mach numbers tested. For the larger

freestream Mach numbers, the predictions of the separation points were

relatively good, while the calculated reattachment points were

significantly upstream of the measured points.
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Sahu and Danberg (1985) used the thin-layer Navier-Stokes equations

to predict the transonic separated flow over the sameaxisymmetric bump

model. The computations were madewith the algebraic turbulence model

of Baldwin and Lomax(1978) and the two-equation (k-z) turbulence model

of Chien (1982). The calculated surface pressure distributions with

both turbulence models were almost identical throughout the interaction

region. The shock location was well predicted, but the pressure was

significantly overpredicted downstreamof the shock by both models and

the pressure plateau was not captured by either model. They thought

that this large discrepancy was due to the poor grid spacing in the

redeveloping region. But the large error in prediction may also be

caused by inadequate turbulence modeling. The large difference between

the predictions of the two turbulence models was noticeable in the

predicted skin-friction coefficients downstreamof the reattachment

point. The two-equation model resulted in a very strange sharp peak

downstream of the reattachment point. The predicted reattachment point

was located about 15% of the bump chord length upstream of the measured

point. Therefore, the accuracy of the k-E turbulence model of Chien

(1982) is somewhat questionable for this flow.

The Johnson-King turbulence model was used by Johnson (1985) in

solutions to the Navier-Stokes equations for axisymmetric bump flows of

Bachalo and Johnson (1979). Calculated results were compared with the

measurements for a wide range of freestream >|ach numbers and were

generally observed to be in very good agreement with the measurements.

However, a slight overprediction of the displacement thickness was
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noticeable downstreamof bump-sting juncture, and a slow recovery of the

flow toward the equilibrium state was evident downstreamof the

reattachment point. Still, the Johnson-King turbulence model was found

to provide very good overall predictions for flows with strong

interaction. The model requires very little more computational effort

than the equilibrium, algebraic models.

d. Viscous-inviscid interaction-general Poor predictions by

the fully inviscid numerical schemes and the high computing cost of

Navier-Stokes solutions have accelerated the development of the viscous-

inviscid interaction approach in recent years. A more comprehensive

discussion of this approach can be found in the recent reviews by

Le Balleur (1981a), Lock (1981), and Melnik (1981). This approach

generally requires the iterative matching of the viscous and inviscid

solutions through displacement thickness coupling. In the initial

development stage, the classical direct matching method was used as can

be found in the works of Bauer et al. (1975), Bavitz (1975), and Collyer

and Lock (1979). The direct interaction method cannot be applied to

separated flows because the boundary-layer solution breaks down at the

point of separation. In order to overcome this singularity problem,

several asymptotic and empirical ideas were developed (Reubush and

Putnam, 1976; Wilmoth, 1977). However, these methods could not provide

significantly accurate solutions due to built-in empiricism.

The separation singularity problem in the boundary-layer equations

can be eliminated by the use of an inverse method. With the inverse

method, prescribing the displacement thickness (Catherall and Mangler,
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1966) or skin friction (Klineberg and Steger, 1974), the boundary-layer

solution becomes regular. However, the displacement thickness or skin-

friction distributions are not known and must be obtained as a part of

solution if the method is to be predictive. Carter and Wornom (1975)

coupled an inverse boundary-layer solution with an inverse solution of

Cauchy integral equation for the incompressible flow calculations. This

approach has received little support because of its slow convergence

rate. Also, it would seem difficult to implement an inverse formulation

for transonic inviscid flow.

Le Balleur (1978) introduced a semi-inverse interaction method for

the calculation of transonic separated flow in which an inverse solution

to the integral boundary-layer equations was coupled to a direct

inviscid solution. A similar approach was developed by Carter (1979)

and Kwon and Pletcher (1979) in their incompressible separated flow

analyses, except that the boundary-layer equations were solved in a

finite-difference form. This approach was also extended to calculations

of transonic flows in many applications.

The integral form of the boundary-layer equations has been used

with various inviscid flow formulations. Whitfield et al. (1981) and

Murman and Bussing (1984) used the Euler equations; Lee and Van Dalsem

(1981) used the full potential equation; Melnik and Brook (1985) used

the full potential equation with an entropy correction. The interaction

schemes of Carter (1981), Van Dalsem and Steger (1983), and Murphy and

King (1983) used the finite-difference form of the boundary-layer

equations for the viscous region and the full potential equation for the
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inviscid region. Although these schemesgave reasonable predictions for

sometransonic flows, discrepancies between calculated and measured

surface pressure distributions were often observed in separated flow

regions.

In a series of numerical studies by Carter and Hafez (1982) and

Carter et al. (1983), attempts were madeto account for normal pressure

gradients and the effects of embeddedshocks. A compressible stream

function formulation was used for the inviscid flow to take into account

the rotational flow effects in the outer region of the boundary layer

downstreamof the shock. The results indicated that for transonic shock

induced separation, the effects of displacement thickness interaction

dominated over those produced by embeddedshocks and normal pressure

gradients. It was concluded that the correct turbulence modeling is

more important in obtaining good predictions than inclusion of normal

pressure gradients.

In another approach to the interaction problems knownas the

simultaneous interaction method, local solutions for the pressure and

displacement thickness are obtained simultaneously so that they can

mutually satisfy the local viscous and inviscid relations. Most of the

early applications of this approach were in fully supersonic or subsonic

flow caseswhere the outer inviscid flow can be described by a simple

linear theory or an integral relation (Lees and Reeves, 1964; Crimi and

Reeves, 1976; Veldman, 1979, 1981; Davis and Werle, 1981; Davis, 1984).

Moseset alo (1978), on the other hand, used an integral method for the

boundary-layer equations and a finite-difference method for the solution
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of the Laplace equation for stream function in the inviscid flow region

for a laminar incompressible flow.

A similar approach using the integral method for the boundary-layer

equations was then extended to steady transonic flows by Wai and

Yoshihara (1981) and to unsteady problems by Houwink and Veldman (1984)

and Le Balleur (1984). A fully finite-difference simultaneous

interaction methodwas first introduced by Edwardsand Carter (1985) for

laminar incompressible separated calculations. In someof the above

studies based on the simultaneous interaction approach, the simultaneous

solution procedure is followed by the pure inviscid or viscous

calculations (Veldman, 1981; Veldmanand Lindhout, 1983; Edwardsand

Carter, 1985). This approach is often called a quasi-simultaneous

interaction method.

e. Viscous-inviscid interaction-boattails and bumps The

following is a more detailed review of calculation results obtained

using the viscous-inviscid interaction approach for the boattail and

bump flows. Chow et al. (1975) applied a conventional direct viscous-

inviscid interaction approach to calculate the transonic flow over

axisymmetric boattail bodies tested by Reubush (1974). The full

potential equation was solved for the inviscid flow region using the

line relaxation scheme of South and Jameson (1973). The direct solution

of the integral boundary-layer equations was used for the viscous flow.

Inviscid solutions were obtained over the equivalent body which was

obtained by adding the displacement thickness to the original body to

account for the viscous effects. The displacement thickness was
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adjusted using a underrelaxation factor of 2/3 after each solution sweep

of the viscous and inviscid equations. The full potential equation was

found to yield better agreementwith the experimental results than the

transonic small disturbance equation. However, the direct calculation

method wasnot applicable to separated flow.

Reubushand Putnam(1976) also employeda direct interaction method

to calculate the separated flow over the sameaxisymmetric boattail

configuration. The inviscid flow region was calculated by a linearized

potential flow (panel) method, developed by Hess and Smith (1967) for

incompressible flows, with a compressibility correction. Therefore,

this methodwas limited to a fully subsonic flow. The viscous flow

region wasdescribed by the integral formulation of the boundary-layer

equations developed by Reshotko and Tucker (1957). To avoid the

singularity problem occurring at the point of separation, a

discriminating streamline method, developed by Presz (1974), was used.

This discriminating streamline, which separates the reversed flow region

from the outer boundary layer so that the boundary layer is treated as

fully attached, was also used as an effective solid body surface. The

discriminating streamline was given as a conical surface diverging from

the model surface at an angle which was dependent primarily on the local

Math numberat the point of separation. A straight line curve fit to

the experimental data of Presz was used to determine the divergence

angle. The separation point, which was extremely critical to the

solution, was determined from the empirical relation of Page (1961).

Then the viscous and inviscid flow regions were solved sequentially in a
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direct modeto update the displacement thickness and surface pressure

distribution until convergence was obtained. Results showedreasonable

agreementwith experimental data, but still large discrepancies were

evident in flows with higher Machnumbers. This method is not regarded

as a truly predictive one because the divergence angle is entirely

dependent on the experimental data and the separation point is

determined empirically. A similar approachwas used by Presz et al.

(1978).

The above methodwas extended by Wilmoth (1977) to transonic

calculations by using the line relaxation method of South and Jameson

(1973) for the finite-difference solution of the full potential

equation. Also, the discriminating streamline was given as a straight

line connecting the predetermined separation and reattaehment points.

The separation point was taken from the oil flow measurementsof

Abeyounis (1977) and the reattachment point was assumedto be at the

point of maximumsurface pressure. Therefore, this method cannot be

regarded as a truly predictive one, either. Better predictions were

obtained with the experimentally determined discriminating streamline

than with the empirically determined one. Also, it was found that the

prediction was very sensitive to the shape and location of

discriminating streamline. This suggests the need for a truly

predictive method in which the separated region can be found as a part

of the solution. Results also indicated that the conservative

differencing of the potential equation might be necessary whenviscous

effects were included. A similar direct interaction approach was used
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by Cosner and Bower (1977), but predictions in flows with significant

separation were poor.

Dash and Pergament (1978) used a finite-difference formulation of

the boundary-layer equations in their direct interaction scheme. The

inviscid region was also described by the full potential equation.

Instead of a solid plume simulator, a jet entrainment correction was

used to yield an effective plume boundary. They employed the two-layer

algebraic and two-equation (k-E 2) turbulence models. The k-£ 2 model

provided better overall results. However, no consideration was given to

solving separated flow.

Kuhn (1980) applied the semi-inverse viscous-inviscid interaction

approach to calculate the same boattail flows. The relaxation method

used by Wilmoth (1977) was used for the direct solution of the inviseid

flow equations. The integral form of the boundary-layer equations was

solved in an inverse mode for the reversed flow region. The

displacement surface in the reversed flow region, which was prescribed

as a boundary condition for the boundary-layer equations and as an

equivalent body surface for the inviseid calculation, was assumed to be

conical starting at the separation point. The inviseid and viscous

solutions were alternatively repeated until convergence was obtained.

The divergence angle and separation point were adjusted in a way to

reduce the root mean square error between the inviscid and viscous edge

velocities in the iteration process. The calculated results generally

agreed well with experimental data. Due to the assumption of linear

displacement thickness profile, this method cannot generally be applied
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accurately to other cases such as the separated flow over a flat plate.

A semi-inverse interaction method was also used by Carter and Vasta

(1982a) to calculate the axisymmetric boattail flows experimentally

studied by Reubush (1974) and the axisymmetric bump flow measured by

Bachalo and Johnson (1979). The conservative full potential equation

was solved by a line relaxation scheme in the inviscid flow region.

Unlike the method of Kuhn (1980), the finite-difference method was used

to obtain the inverse solution of the boundary-layer equations. The

standard first-order boundary-layer analysis was also modified to

account for the effects of the normal pressure gradient which may be

significant in strongly interacting flows. The viscous and inviscid

calculations were coupled using a transpiration velocity boundary

condition for the inviscid flow that was related to the streamwise

gradient of the displacement thickness following Lighthill (1958). The

displacement thickness was updated with a formula suggested by Carter

(1979), which was based on the mismatch of the inviscid and viscous edge

velocities. With an algebraic turbulence model, the pressure was

overpredicted and the separation point was too far downstream. Using

the relaxation model of Shang and Hankey (1975), better predictions were

observed. Still, predictions in the reversed region appeared to need

improvement. The effects of normal pressure gradient were not believed

to be of importance for this flow.

Whitfield et al. (1981) calculated the transonic interacting flow

over a planar bump, experimentally studied by Altstatt (1977), using the

semi-inverse viscous-inviscid interaction method. The time-dependent
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Euler equations in conservative form were solved in a finite-volume

formulation for the inviscid flow calculation. The boundary-layer

equations were solved by an inverse integral technique. The viscous and

inviscid calculations were coupled using a transpiration velocity. The

update formula for displacement thickness was identical to that used by

Carter (1979). Reasonablygood agreementbetween calculated and

measuredsurface pressure data was observed. No specific comparisons

for other quantities were available.

A semi-inverse interaction method was used by Carter (1981) to

calculate the transonic flow over the axisymmetric bumpexperimentally

studied by Bachalo and Johnson (1979). Carter's schemeutilized a

finite-difference inverse procedure for the boundary-layer equations.

The full potential equation was solved by a line relaxation technique.

The samecoupling procedure proposed by Carter (1979) for incompressible

flow was used. Predictions obtained with the two-layer algebraic

Cebeci-Smith model showedpoor agreementwith the measurements; the

pressure was significantly overpredicted in the vicinity of the bump-

sting juncture and the separation point was predicted too far

downstream. The discrepancies were attributed to inadequate turbulence

modeling. With a reduced value of the Clauser constant in the Cebeci-

Smith turbulence model, better predictions were observed. The above

studies based on the viscous-inviscid interaction method except for the

direct method are summarizedin Table i.
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TABLEi. The summaryof previous studies based on the viscous-inviscid
interaction method

Inter- Viscous Inviscid Appli-
References action analysis analysis cation

Carter and Wornom(1975) IV
Le Balleur (1978) SE
Moseset al. (1978) SI
Carter (1979) SE
Kwonand Pletcher (1979) SE
Veldman (1979) QS
Kuhn (1980) SE
Whitfield et al. (1981) SE
Lee and Van Dalsem (1981) SE
Carter (1981) SE
Kwonand Pletcher (1981) SE
Veldman (1981) QS
Davis and Werle (1981) QS
Wai and Yoshihara (1981) SI
Carter and Hafez (1982) SE
Carter and Vasta (1982b) SE
Van Dalsem and Steger (1983) SE
Murphy and King (1983) SE
Carter et al. (1983) SE
Veldmanand Lindhout (1983) QS
Davis (1984) SI
Houwink and Veldman (1984) SI
Le Balleur (1984) SI
Helnik and Brook (1985) SE
Edwardsand Carter (1985) QS

FD IN SB
IN FD TR
IN FD SB
FD FD SB
FD IN SB
FD IN SB
FD FD TR
IN FD TR
IN FD TR
FD FD TR
FD FD SB
FD IN SB
FD IN SB
IN FD TR
FD FD TR
FD IN SB
FD FD TR
FD FD TR
FD FD TR
FD IN SB
FD IN SB,SP
IN FD TR
IN FD TR
IN FD TR
FD FD SB

IV : inverse
SE : semi-inverse
QS : quasi-simultaneous
Sl : simultaneous

IN : integral
FD : finite-difference

SB : subsonic
SP : supersonic
TR : transonic
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C. Scope and Contributions of the Present Study

Previous studies of transonic flows with strong viscous-inviscid

interaction described above have used either the time-averaged Navier-

Stokes equations or the zonal (viscous-inviscid interaction) approach.

Generally, the Navier-Stokes solutions provide a reasonably good

predictions for flows with strong interaction between a shock wave and a

boundary layer, and separated flows can be handled without special

treatments. However, the numerical solution of Navier-Stokes equations

still requires a large computational effort, especially for turbulent

flows. Fine grids are often needed to obtain reasonable solutions

because the use of wall functions for compressible turbulent flows is

not well established. Therefore, turbulent flow calculations usually

require large computing times or they exhibit relatively large errors

caused by the use of a coarse mesh in order to reduce the computational

effort. This situation is expected to improve with time, however, due

to continuing improvements in algorithms and computing machines.

The need to improve computational efficiency for transonic flows

provided motivation for the present study. Viscous-inviscid interaction

methods have been used successfully in the calculation of incompressible

separated flows by many investigators. As discussed in the preceding

section, predictions obtained by the interaction method showed

reasonably good agreement with solutions of the Navier-Stokes equations

for strongly interacting transonic flows.

The objective of the present study was to develop an efficient and

robust viscous-inviscid interaction scheme that can be used to predict
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transonic flows with strong interaction between a shock wave and a

boUndary layer. First, the limit of applicability and efficiency of the

semi-inverse interaction scheme, developed by Kwon and Pletcher (1979)

and Carter (1979) was studied. Then a new interaction method was sought

to enhance the efficiency and applicability of the overall interaction

approach.

In the present semi-inverse interaction method, the flow domain was

divided into the irrotational inviscid and viscous regions. The

inviscid flow region was described by a direct finite-difference

solution of a full potential equation in conservative form. The

inviscid solution procedure was based on the iterative approximate

factorization (AF2) algorithm which was implemented into the computer

code, TAIR, by Dougherty et al. (1981). The TAIR code was modified in a

manner that permitted calculation of any specified portion of an

axisymmetric flow field having nonperiodic boundary conditions. The

boundary-layer equations were solved by an inverse finite-difference

method in the viscous flow region. In order to increase the efficiency

of the overall interaction scheme and eliminate the possible stagnation

point problem of the inviscid solution, a shear-layer coordinate system

was adopted as suggested by Carter (1981): Its influence on the final

solution and the global convergence behavior was evaluated by using

several different shear-layer coordinates.

The viscous solution was coupled with the inviscid solution using

the transpiration velocity formulation to account for the displacement

effect. The updating algorithm of Carter (1981), which was used to
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update the displacement thickness distribution through an iterative

procedure based on the mismatch between inviscid and viscous edge

velocities, was modified to increase the convergence rate of the global

iteration procedure. However, this type of coupling algorithm has been

knownto be unstable for extensively separated flow regions in a

supersonic stream as suggested by Wigton and Holt (1981). This trend

has been experienced in the present study. Therefore, the development

of a more robust interaction schemewas needed for the prediction of

general separated transonic flows with strong interaction.

A new simultaneous viscous-inviscid interaction methodwas

developed in the present study. In this new interaction coupling

algorithm, the inviscid and viscous solutions were obtained

simultaneously in order to eliminate numerical problems associated with

the semi-inverse interaction method in the calculation of extensively

separated flow. The simultaneous solution procedure was madepossible

through a localized implicit treatment of two sets of equations.

Therefore, the updated displacement thickness required for a better

agreementbetween the inviscid and viscous pressure distributions was

obtained as a part of the iterative solution procedure, not with a

separate interaction algorithm as used in the semi-inverse interaction

method. To simplify the local treatment of the inviscid solution

procedure, the conservative full potential equation was solved by a

simple successive line overrelaxation (SLOR)scheme.

Thesolution procedure for the boundary-layer equations was almost

identical to that of the semi-inverse method except that the
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displacement thickness was treated as unknown to be obtained as a part

of solution. It was found that most of the computing time was taken by

the Newton linearization procedure in the boundary-layer equations. A

pseudo-time dependent approach was developed to reduce the computing

time needed in the linearization procedure. Since the separation was

very large in several test cases, there was some concern about the

marching procedure of the finite-difference scheme in the reversed flow

region. To verify the effectiveness of the FLARE approximation, a

windward differencing scheme was also employed in the separated flow

region for some of the calculations for the purpose of comparison. The

multiple sweep procedure required for the windward differencing was not

used separately but was achieved by the global interaction iterative

procedure. To the authors' knowledge, the present new interaction

scheme is the first simultaneous interaction scheme to be applied to the

transonic flow regime employing the finite-difference method for both

the inviscid and viscous equations.

These two viscous-inviscid interaction methods were demonstrated by

computations of several different flows including the two-dimensional

laminar incompressible separated flow over a flat plate with a trough,

first numerically studied by Carter and Wornom (1975), turbulent

transonic flow over an axisymmetric boattail afterbody with a solid

cylindrical plume simulator experimentally tested by Reubush (1974), and

the turbulent transonic flow over an axisymmetric bump attached to a

cylinder experimentally measured by Bachalo and Johnson (1979).
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In the calculation of turbulent transonic flow, turbulence modeling

is of great importance if separation exists. In the previous studies

employing either the viscous-inviscid interaction method or the Navier-

Stokes equations, predictions obtained by both algebraic and two-

equation turbulence models were generally in poor agreement with

experimental data, specially in the shock induced separated region.

These discrepancies are believed to be largely due to shortcomings of

turbulence modeling.

The calculated results also suggested that the nonequilibrium

effects must be accounted for correctly. Johnson and King (1985)

recently proposed a new turbulence model designed especially for

turbulent boundary layers in strong adverse pressure gradient with

separation. This model makes use of an ordinary differential equation

for the maximum Reynolds shear stress which provides a velocity scale

for turbulent viscosity. In the present study, this new Johnson-King

turbulence model was further evaluated in comparison with the algebraic

Cebeci-Smith model. Observations are made about the effect of varying

parameters in the Johnson-King model and the influence of the choice of

turbulence model on the convergence properties of the numerical scheme.

The contributions of the present study can be summarized as

follows:

i. A modification to the semi-inverse interaction method was developed

to improve the convergence speed of the global iteration procedure.

2. A shear-layer coordinate system was adopted and its effects upon

final solutions and convergence were evaluated.
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3. The validity of the FLAREapproximation was evaluated in the shock

induced separation region by comparing with results obtained with the

windward differencing.

4. The pseudo-time dependent approach was developed to reduce the

computing time needed for the Newtonlinearization procedure whenthe

multiple sweepsof the boundary-layer equations were used.

5. A new simultaneous interaction methodbased on the fully finite-

difference schemewas developed for transonic flow to provide a more

robust and efficient viscous-inviscid interaction algorithm than the

semi-inverse interaction scheme.

6. The Johnson-King model was evaluated in a fully predictive viscous-

inviscid interaction calculation scheme.

7. The effect of the choice of turbulence model on the interaction

convergence behavior was observed.

In the following chapter, the basic conservation laws needed to

derive the governing equations for transonic flows are presented. Also

in Chapter II, the viscous analysis basedon the boundary-layer

equations is presented together with the discussion of turbulence

modeling. Next, the inviscid analysis based on the full potential

equation formulation is discussed in Chapter III. In Chapter IV, the

present viscous-inviscid interaction methods are discussed. Finally,

Chapter V presents the calculation results in comparison with the

available experimental measurementsand other numerical solutions, which

is followed by the conclusions in Chapter VI.
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II. VISCOUSANALYSIS

In this chapter, the detailed description of the solution procedure

for viscous flows will be presented. The general conservation

principles are described first. The governing equations for

compressible turbulent boundary-layer flows are then developed from

those general conservation statements. Turbulence models for both

equilibrium and nonequilibrium flows are discussed. The numerical

methods used to solve the equations are also described.

A. Laws of Conservation

The fundamental equations of fluid dynamics are based on three

universal laws of conservation of mass, momentumand energy. The

governing equations are derived by applying these conservation laws to a

uniform, homogeneousfluid without mass-diffusion or finite-rate

chemical reactions.

I. Conservation of mass

Using the Eulerian approach, conservation of mass applied to a

fluid passing through an infinitesimal, fixed control volume yields the

continuity equation which can be written in vector notation as

_--£+ V'(pV) = 0 (2 i)

where p is the fluid density and V is the fluid velocity vector.
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2. Conservation of momentum

Conservation of momentum, which is an application of Newton's

second law to a fixed control volume, can be expressed as

(pV) + V'pVV = p_ + V'n (2.2)

-4, - -->

where f is a body force and _ is a stress tensor. With a constitutive

relation for an isotropic, Newtonian fluid based on Stoke's hypothesis,

the stress tensor, _, is reduced to

_ij = - P6ij + _ij (2.3)

where 6.. is the Kronecker delta function ( 6.. = 1 if i = j and 6.. = 0
1] 1j 1j

if i = j ) and _.. is a viscous stress tensor given by
ij

_u.1 ___/_u" 2 _Uk

_ij = g [(_-_j + _x')l 3 6ij _-_k ]
(2.4)

for Cartesian coordinates.

Substituting Equation (2.3) into Equation (2.2) and using Equation

(2.1), the well known Navier-Stokes equation is obtained as

--+

P_V + p_'V_ = pF - Vp + V'_ (2.5)

3. Conservation of energy

The conservation law for energy is a statement of the First Law of

Thermodynamics for fluid passing through a fixed control volume. This

yields the energy equation written in terms of total enthalpy, H, as



(2.6)

H is defined as

H=h+_ (2.7)

where h is enthalpy. Using Fourier's law for heat transfer by

conduction, the heat flux vector, q, can be expressed as

_.> .

q = - kVT (2.8)

where k is the thermal conductivity.

4. Equation of state

In order to close the above set of conservation equations, the

relationships between thermodynamic properties and the transport

properties must be specified. Since the fluid of interest is air at

transonic speed, the perfect gas equation of state can be applied with

little error

p = pRT (2.9)

where R is the gas constant. Also for a perfect gas, the following

relationships hold:

C
R _R

h = c T _" =...E c = -- c = --
"Y-1p c v _.I p _

v

(2.10)

where c is the specific heat at constant volume, c is the specific
v p

heat at constant pressure and _ is the ratio of specific heats.
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For the coefficient of viscosity, Sutherland's equation was used,

T 3/2

= C1 T + C 2

where C I and C 2 are constants for a given gas.

conductivity, k, was evaluated by

(2.11)

The thermal

k = _2__ (2.12)
Pr

where Pr is the Prandtl number, which was assumed to be constant.

B. Turbulent Flows

Most flows occurring in nature and in practical applications are

turbulent. The scientific study of turbulent flow spans approximately

one century and has resulted in significant progress in many directions.

Our understanding of turbulent flow is, however, very incomplete.

Turbulent fluid motion is defined by Hinze (1975) as an irregular

condition of flow in which the various quantities show a random

variation in time and space coordinates, so that statistically distinct

average values can be discerned, and is often characterized with a wide

range of frequencies and length scales. The size of the largest scale

is determined mainly by the characteristic dimension of the main flow,

while the size of the smallest is determined by the fluid viscosity.

The large scale motion is believed to carry most of the energy and

momentum in turbulence. The energy is continuously transferred from the

largest through the intermediate to the smallest scales, where the

energy is dissipated as heat (Reynolds, 1974).
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The unsteady full Navier-Stokes equations are generally considered

to describe turbulent flows as well as laminar flows. When the Navier-

Stokes equations are used to obtain the solution for fluid motion,

numerical methods must be used instead of analytical procedures because

of the highly nonlinear characteristics of the equations. However, time

and space scales of turbulent motion are so small that the large number

of grid points and the small size of the time steps required to

discretize the equations for computer simulation are beyond the

capabilities of present day computers at least for practical problems.

The most common practice in the computation of turbulent flows at

the present time is to solve the time-averaged Navier-Stokes equations,

which are often referred to as the Reynolds equations of motion, in

place of the instantaneous equations. These time-averaged equations are

derived by replacing the instantaneous quantities by the sum of their

time-mean and fluctuating quantities as

f = f + f" (2.13)

Time-averaged quantities are denoted by overbars and are defined as

t÷At

= 1__ ] f(t) dt
At

t

(2.14)

where At is large compared to the time scale of random fluctuations

associated with the turbulence but smaller than the time scale of

unsteady mean motion. For a fluctuating quantity, the time average is

zero by definition.
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For the treatment of compressible flows and mixtures of gases, it

is convenient to use the mass-weighted averaging suggested by Favre

(1965), which removes density fluctuations from the time-averaged

equations of motion. A mass-weighted average is defined by

f = _ + f' (2.15)

where

=P f_ (2.16)
P

Hereafter, steady flow is assumed and body forces are neglected.

Using Equation (2.15) for the velocity and enthalpy and Equation (2.13)

for the density and pressure, the instantaneous quantities in Equations

(2.1), (2.5), and (2.6) are replaced with their mean and fluctuating

quantities. Using the time-averaging procedure and canceling vanishing

terms in those equations, the mean conservation equations for mass,

momentum, and energy are obtained as

continuity

v. (_) = 0 (2.17)

momentum

v-Gv_) = - v_ + v.(_ - _v-WT) (2.18)

ene__q£f_g_

V'(pVH) = V'(kVT - -pH'V' + V_ + "_) (2.19)
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C. Coordinate System

The coordinate system chosen for the present analysis is presented

in Figure 2. In the case of axisymmetric external flows, it is common

to use axisymmetric body intrinsic curvilinear coordinates where the

abscissa, x, is measured along the body surface and the ordinate, y, is

measured normal to the body surface as shown in Figure 2. Also, the

radial distance from the axis of symmetry is noted by r.

The boundary-layer approximation, which will be discussed in detail

in the following section, is based on the assumption that the dominant

viscous shear force is parallel to the body surface. However, when the

flow separates, the flow direction may deviate substantially from the

direction determined by the tangent to the body surface. If the

separated flow region is large, the validity of the boundary-layer

approximation might be questioned.

Werle and Verdon (1980) proposed the use of a shear-layer

coordinate system, shown in Figure 3, for viscous separated flows over a

blunt trailing edge. This coordinate system is chosen so as to align

with the predominant direction of the separated viscous flow by adding

the thickness t to the original body coordinate as shown in Figure 3.

The boundary-layer approximation is then applied with respect to this

coordinate system in place of a body-oriented coordinate system.

Another important advantage of using this shear-layer coordinate system

arises in the calculation of the inviscid flow in a viscous-inviscid

interaction procedure. For a body shape with a slope discontinuity, the

inviscid flow is solved over the shear-layer coordinate by adding the
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FIGURE 2. Coordinate system for the viscous analysis
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v u SHEAR-LAYER

FIGURE 3. Shear-layer coordinate system
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thickness t to the actual body surface, which eliminates artificial

inviscid stagnation points thus simplifying the inviscid calculation as

well as the overall interaction procedure.

As pointed out by Carter (1981), corrections must be made in the

viscous-inviscid interaction procedure to account for the change in

coordinates. The choice of the shear-layer coordinate direction is

arbitrary but it should approximately align with the main direction of

flow in viscous regions. Further details on the shear-layer coordinate

system will be presented in a later section. Calculations were also

made using the body-oriented coordinate system indicated by Figure 2 in

the present study.

D. Boundary-Layer Approximation

It is well known from experimental observations that, at large

Reynolds numbers, the effects of viscosity become increasingly confined

to a narrow region near a solid boundary. In such flow regions, the

governing equations can be simplified considerably by using Prandtl's

boundary-layer approximation. Assuming that the viscous layer is thin

relative to the characteristic dimension of the object immersed in the

flow and that the largest viscous term is of the same approximate

magnitude as any inertia term, an order of magnitude analysis can be

used to obtain a simplified set of equations, i.e., boundary-layer

equations.

This order of magnitude reduction for compressible turbulent flow

is so lengthy that only the important points will be discussed here (see
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Cebeci and Smith (1974)). The analysis is based on the assumption:

B @
-- >> -- u >> v f >> f'
By @x (2.20)

To estimate the magnitude of turbulence quantities, experimental

observations must be used. For compressible flows, the magnitude of

fluctuating terms of density and pressure in addition to velocity and

temperature must be estimated. If fluctuations of the pressure and

total temperature, T , are negligibly small, i.e.,
O

T

-Y-- << I o << I
_- (2.21)

O

where To = T + 0.5 u2/Cp, then temperature fluctuations are nearly

isobaric (Bradshaw, 1977) as

' T' )M2 u'R_ .... (_-i __ (2.22)F T u

In the region near the wall, velocity fluctuations are relatively large,

but the Math number M is usually small. In the outer region where the

Mach number is large, velocity fluctuations are generally small.

Therefore, density fluctuations are small everywhere across the boundary

layer for Mach numbers even up to 5. Even though there is evidence

(Kist!er and Chen, 1963) that the magnitude of the pressure fluctuation

is appreciable at Mach number around 5 and is expected to increase with

increasing Math number, the pressure fluctuations are usually assumed to

..... 6_ ........ _±_ seems to be a very sound assumption for transonic

flows. The effects of compressibility upon fluctuations of transport

properties like the viscosity, conductivity and specific heats are not
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well understood, but those fluctuations can usually be neglected

(Bradshaw and Ferriss, 1971). Consequently, the turbulence structure

of the boundary layer for Math number up through 5 is generally believed

to be the same as in the low speed flow, that is, incompressible flow.

Also, under the boundary-layer approximation, the following relations

between the time-mean and mass-weighted mean values are found (Cebeci

and Smith, 1974)

= _ H = _ (2.23)

i. Governing equations

With the above boundary-layer approximation, Equations

(2.17)-(2.19) are reduced to the following boundary-layer equations for

axisymmetric compressible turbulent flows:

continuity

_x(pUr) + _y(pVr) = 0

momentum

___ _~_ d__ + i _ _ --
PU_x + pV_y = - dx r _y [r(_y - _u'v')]

(2.24)

(2.25)

--_H -~_H i _ {r[_ _H -- i .--_
pu_ x + pV_y = r 8y Prr _yy pH'v' + (i - _r)_U_y]}

where r is set to unity for a plane two-dimensional case. These

equations are also valid for laminar flows when the terms involving the

fluctuating quantities are set to zero.

(2.26)
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In obtaining the boundary-layer equations, second derivatives of

the velocity component in the streamwise, x, direction have been

neglected along with the entire momentum equation for the transverse, y,

direction. As a result, the pressure gradient in the transverse

direction is set to zero and pressure becomes a function of x only.

With the velocity component in the streamwise direction at the edge of

the boundary layer, Ue, specified as a boundary condition, dp/dx can be

evaluated from the inviscid flow equation given by

du
dp = e
dx - PeUe dx (2.27)

The boundary-layer approximation provides very important

mathematical advantages: first, the equations become parabolic instead

of elliptic so that the streamwise direction becomes the marching

direction and the numerical solution procedure becomes much simpler;

second, pressure can be impressed upon the boundary layer as a known

variable; third, boundary conditions are reduced considerably, notably

for v and in the x coordinate direction.

Note that in the case of turbulent flow, new unknown terms are

introduced in the boundary-layer equations due to the Reynolds

decomposition and averaging process. These terms - u_vv' and - H'v',

representing the apparent turbulent shear stress and heat flux

quantities, must be modeled using empirical information to close the

system of equations. The study of turbulence modeling will be discussed

in Section II. E.



52

2. Boundary conditions

Appropriate boundary conditions are required to solve these

governing equations for viscous flow regions. In a standard procedure,

initial profiles for u and H are required at the starting plane as well

as values of u, v and H at the wall and values of u and H at the

boundary layer edge.

This standard procedure, which is referred as a direct method,

becomes singular at the point of separation (Goldstein, 1948; Brown and

Stewartson, 1969). When the pressure gradient is fixed near separation,

the normal component of velocity, v, increases toward infinity at the

point of separation. In a finite-difference solution, the magnitude of

v at the point of separation is finite with a finite streamwise step

size but will increase as the step size is reduced. As a result, the

solution will not be unique and will usually fail to converge. This

classical separation singularity, which is purely mathematical, can be

avoided by the use of an inverse method which was suggested by Catherall

and Mangler (1966). It has been used successfully by several

investigators in numerical calculations (Klineberg and Steger, 1974;

Williams, 1975; Carter, 1978; Kwon and Pletcher, 1979). In the inverse

method, a regular solution is obtained through separated flow regions by

prescribing the displacement thickness or skin friction in place of

pressure gradient or u and the pressure gradient is determined as a
e

part of solution.

The initial profiles for velocity and enthalpy at the stagnation

point are provided automatically by similarity solutions to the
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transformed equations that will be presented in a later section. The

typical initial guesses required to obtain these solutions were obtained

from freestream conditions, i.e., for y > -t,

u(0,y) = u _(0,y) = 0 H(0,y) = H (2.28)

At the solid boundary, the no slip condition was used for the

velocity components:

_(x,-t) = _(x,-t) = 0 (2.29)

For the total enthalpy, either the wall value or wall heat flux was

specified, i.e.,

H(x,-t) = Hw(X ) or _$ = qw(X) (2.30)
y=-t

In the direct method, values of the velocity and total enthalpy

were prescribed at the outer edge of the boundary layer as

as y _ -, _(x,y) _ Ue(X) H(x,y) + He(X) (2.31)

where the subscript e refers to conditions at the edge of the boundary

layer. The pressure gradient was also determined from the specified

u (x) as given by Equation (2.27)e

The inverse procedure was used for the region interacted with the

inviscid flow solution by specifying the displacement thickness which is

defined as

* r6 = $ (I - dy (2 32)
-t ro PeUe
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for axisymmetric compressible flows instead of the value of u at the

edge of the boundary layer. The total enthalpy was specified as in the

direct method.

Although the inverse method was developed mainly for separated

flows, the method can also be used for attached flows. However, in the

present study, attached flows were generally computedby the direct

method. From now on, for simplicity, the bars and tildes will be

omitted from the single meanquantities.

E. Turbulence Modeling

In a previous section the need for turbulence modeling was pointed

out. Unfortunately, a universal turbulence model has not been developed

to date and it seemsvery unlikely that one will be developed soon.

Therefore, it might be better to find turbulence models which have

reasonable accuracy over limited ranges of flow conditions. With such a

purpose, it is essential to understand the basic aspects of the

structure of turbulent flow before proceeding with the implementation of

turbulence models.

i. The structure of the turbulent boundary layer

As discussed in a previous section, the structure of turbulent flow

appears to remain almost unchanged for Mach numbers up through 5. It

is, therefore, generally sufficient to include compressibility effects

implicitly through the mean density variation in turbulence models which

work reasonably well for incompressible flows.
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The inner and outer regions of an incompressible, constant property

turbulent boundary layer along a solid wall generally have quite

different characteristics. However, they are strongly coupled by the

shear stress profile and general diffusivity of the turbulence. The

inner region comprises only a small fraction of a whole boundary layer

in terms of thickness, but its influence over the entire boundary layer

is significant. Klebanoff and Diehl (1952) experimentally observed that

the inner region is generally insensitive to flow conditions far away

from the wall and to the upstream conditions and that the meanvelocity

distribution is strongly dependent on the local conditions such as the

wall shear, _w' density, p, viscosity, _, and the distance y from the

wall. This suggests that the inner region is frequently in a state of

near local equilibrium according to Bradshaw(1972). In such a case,

the meanflow motion can be described by a rather simple expression

known as the law of the wall,

+
u = fl(y +) (2.33)

by using the wall coordinates defined as

+ u + v_up
u = -- Y = _ (2.34)u

where u which is called the friction velocity, is given by

½
u = (_) (2.35)

The inner region can be further divided into three layers: a viscous

sublayer, a buffer region, and a fully turbulent region based on the
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relative magnitude of the viscous and turbulent shear stress.

The outer region of the turbulent boundary layer occupies most

(= 80%)of the boundary-layer thickness. The meanvelocity distribution

in this region is generally knownto be described by the velocity-defect

law:

U - U

e - f2 (_)O (2.36)u
T

where 6 is the boundary-layer thickness. Unlike the inner region, the

function f2 is strongly affected by streamwise pressure gradient.

Clauser (1956) discovered that a similarity velocity profile in the

outer region can be obtained by choosing proper scaling variables.

The preceding argument is generally applicable to fully attached

turbulent boundary layers. When the turbulent flow separates under a

strong adverse pressure gradient, the flow is often found to be

unsteady, sometimes randomly and sometimes in a quasi-periodic sense.

Simpson et al. (1977) observed that the qualitative turbulence structure

upstream of the separation is not significantly different from that in

flows with zero pressure gradient. As separation is approached, the

flow is gradually influenced by the large scale outer flow and finally

the motion near the wall is governed by the large eddy motion downstream

of the separation point. These turbulent fluctuations in the separated

region are of unusually large magnitude compared to the mean velocities.

The law of the wall for the mean velocity profile and the local

equilibrium argument appear not to be valid for separated flows

according to Simpson (1979).
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In the wall boundary layer developing downstream of the

reattachment point, the mixing layer and the new wall shear layer

intersect and result in a complicated turbulence structure. The

incoming mixing layer in the outer part of the boundary layer is

believed to carry characteristics of the separated region far downstream

of reattachment. It has been also observed that it takes quite a long

distance for flows to return to the structure of the ordinary turbulent

boundary layer (Bradshaw and Wong, 1972). After the reattachment point,

the turbulent energy is usually decreasing continuously but the exact

reason for this phenomenon is not known.

The above discussion was mainly focused on incompressible flows.

As mentioned before, there is evidence that the basic structure of

turbulence is not altered significantly by moderate density or

temperature fluctuations, which suggests that interaction between the

velocity and temperature fluctuations is probably not strong even in

flow of moderate Mach numbers (Bradshaw, 1977). Thus for compressible

turbulent shear flows, the main coupling between the governing equations

occurs through the mean density variation only.

As was the case for incompressible flows, the mean velocity

distribution in the inner region can be observed to be somewhat similar

by using wall coordinates. Since density and viscosity vary with the

position, their values at the wall are used to define the friction

velocity and wall coordinates as follows:

+ u + yU_Pw = _W ½
u = -- y = u (_-)

u Bw 'w

(2.37)
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It is, however, not easy to obtain a simple law of the wall expression

for the mean velocity in the inner region in the compressible case.

Analyses of experimental data suggest that law of the wall for

compressible flows is significantly affected by compressibility, i.e.,

effect of high Math number, pressure gradient and heat transfer at the

wall. The usual law of the wall for compressible flows then becomes

+
u = f3(y +, Bc, M , p+) (2.38)

where

qw u + v u due e e
= M = -- P = 3 (2.39)

Bc TwPwCpwU _ _ aw u_ dx

and qw and aw are the outward heat transfer rate and speed of sound at

the wall (Bradshaw, 1977). Generally, the effects of high Mach number,

a hot wall (negative Be), and a favorable pressure gradient (negative

+)p tend to drive the velocity data u+(y +) down below the incompressible

logarithmic law (White, 1974). There have been numerous suggestions for

the law of the wall function, f3 (Van Driest, 1951; Maise and McDonald,

1968; Bertram, 1968; Baldwin and MacCormack, 1976; Viegas and Rubesin,

1983). These will not be given here and such a function was not used in

the present calculations.

Even though the basic structure of turbulence remains unchanged for

flows with a moderate Math number, the flow pattern might become quite

complex due to the intersection of a shock wave with a boundary layer in

transonic flows. In the inner part of the boundary layer near the wall

where the flow is subsonic, disturbances created by the impingement of
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the shock wave cannot be discontinuous and thus are partly propagated

upstream. This causes the streamlines upstream in the subsonic region

to diverge and the increase of the thickness results in compression

waves in the outer supersonic region. These intersect with the shock

wave and cause it to bend forward. Thepressure rise along the wall is

still steep but continuous and takes places over a distance of the order

of the boundary-layer thickness. If the pressure rise is sufficiently

large, then the boundary layer separates with a more complex flow

pattern forming a separation bubble and increasing the streamwise spread

of the pressure rise. The complicated structure is primarily due to the

mixing of supersonic and subsonic regions.

During the interaction with the shock wave, relatively large shear

stress gradients normal to the wall build up in the inner region and are

of crucial importance, dragging low energy flow downstreaminto the

region of high pressure. In the outer supersonic layer, the flow is

more nearly inviscid and is usually described in terms of wave pattern.

The most distinguishing features of this pattern are the refraction of

all waves by the rotational supersonic layer and the reflection of all

incoming waves whenthey reach the sonic line. The reflection at the

sonic line is compatible with the behavior of the subsonic region

(Green, 1970).

If the overall pressure rise associated with the shock wave is not

large enough to cause separation, the streamwise extent of the

interaction region is then typically two or three times the thickness of

the undisturbed boundary layer. In this case, since the upstream
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propagation of pressure disturbances is small and the boundary layer

remains thin, most of the outgoing compression waves coalesce with the

outgoing randomshock. Therefore, the effect of the viscous layer upon

the pattern of the shock wave is relatively small.

Whenseparation occurs, the flow pattern becomesquite complicated.

As shownin Figure i, separation generally results in bifurcation of the

shock wave into a leading and rear shock, generating a vortex sheet with

a rapid entropy rise. A separation bubble of slow recirculating flow

occurs at the foot of the shock wave in the lower portion of the viscous

layer. A strong transonic interaction may involve the additional

complication of a tongue of supersonic flow downstreamof the shock.

This supersonic region embeddedin the subsonic region outside the

boundary layer is believed to interfere with the normal process of

reattachment. As a result, the length of the separated region becomes

more sensitive to changes in the overall pressure rise. This appearance

of an embeddedsupersonic zone is consequently associated with the

beginning of the phase in which the interaction increasingly affects the

pressure at the trailing edge. A more detailed description of the

behavior of a transonic turbulent boundary layer subject to strong

interaction with shock waves can be found in the articles by Green

(1968, 1970).

Oneof the major difficulties in predicting such a flow is

uncertainty about the development of the turbulent shear stress in the

region where pressure changes rapidly. This problem becomesserious

when there is a severe adverse pressure gradient downstreamof the
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shock. In this case, the effect of uncertainties in predicting shear

stress changes through the shock may be significantly magnified in the

region of rising pressure downstream. Hence, as shock strength

increases, it becomes more desirable to use a method which takes account

of history, i.e., which includes an independent relation for the rate of

change of shear stress. However, present understanding of a strongly

interacted boundary layer is mainly qualitative and more detailed

experimental studies are needed. Thus, present turbulence models are

not complete and must be refined through a series of comparisons with

experiments.

2. Turbulence modeling

The apparent turbulent stress and heat flux appearing in the

Reynolds-averaged boundary-layer equations must be specified in order to

predict the mean velocity and temperature distributions across the

boundary layer. While relationships among these quantities can be

developed into the form of transport equations from the basic

conservation laws, more unknown quantities are introduced. These

quantities must be evaluated based on empirical hypotheses.

One of the simplest modeling strategies follows the proposal of

Boussinesq (1877). Boussinesq assumed that turbulent shear stresses are

related to the rate of mean strain via a turbulent viscosity defined by

au

-pu v = _t _y (2.40)

By analogy with the kinetic theory of gases, which provides an accurate
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theory for the molecular viscosity, the turbulent viscosity, _t' is

assumed to be the product of a velocity and a length,

_t = PVt£ (2.41)

where v t and £ are characteristic velocity and length scales of the

turbulence, respectively. Therefore, the main task in representing the

turbulent viscosity is to find appropriate expression for v t and £.

In a like manner, the apparent turbulent heat flux is related to

the turbulent viscosity and the mean flow variables through Boussinesq's

turbulent conductivity concept. Using Equation (2.7), the apparent

turbulent heat flux in the boundary layer is approximated as

pH'v' = ph'v' + puu'v' (2.42)

Using Boussinesq's turbulent conductivity concept and the turbulent

Prandtl number,

#t Bh
-ph'v' -

Pr t By
(2.43)

Substituting Equations (2.40) and (2.43) into Equation (2.42), the

apparent turbulent heat flux is given as

_ I . @u
_t BH + (I - _-TF-)_tUXTI__ (2.44)

-pH'v' pr t _y oY

Experimental data suggest that Pr t is a well behaved function across the

flow, and reasonably good predictions have been achieved even with a

constant value of Prt, for example, 0.9. Note that _t and Pr t are not

the physical properties but vary with local flow conditions and
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geometry. Although the Boussinesq assumption is not in complete

agreement with all available experimental evidence, it appears to be a

reasonably good approximation in many engineering flow circumstances.

The models that utilize the Boussinesq assumption are further

classified by the number of supplementary partial differential equations

which are used to obtain the modeling parameters like vt, _ or Bt

itself. An ordinary differential equation is usually counted as a half

equation and algebraic equations are counted as zero.

The algebraic or zero equation model, which is based on Prandtl's

mixing length concept (1926), is the simplest and most popular

turbulence model among those utilizing the Boussinesq assumption. In

this model, the characteristic scales and the turbulent Prandtl number

are given by simple algebraic equations related to the motion of the

mean flow. Despite its simplicity, it has proven effective in

predicting relatively simple flows. In order to make it more accurate

for complicated flow cases, there have been numerous attempts to modify

the algebraic equations with semi-empirical relations (Van Driest, 1951;

Patankar and Spalding, 1967; Cebeci and Smith, 1974; Deiwert, 1976;

Baldwin and Lomax, 1978; see, e.g., Anderson et al., 1984). The major

objection to algebraic models is that they are based on a local

equilibrium assumption, i.e., the turbulent viscosity is evaluated only

in terms of local flow parameters and upstream effects are not

considered.

A one-half equation model is considered as the least complex method

which can approximately account for the nonequilibrium effects. One of
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the modeling parameters or turbulent viscosity itself is controlled by

the solution of an ordinary differential equation which can usually be

derived from the more general transport equation for the parameters by

neglecting variations in one coordinate direction while the other

parameters, if any, are governed by algebraic relations. Most of these

models employ an ordinary differential equation for the length scale

(McDonaldand Kreskovsky, 1974; Chan, 1972; Pletcher, 1978) or turbulent

viscosity (Shangand Hankey, 1975; Reyhner, 1968).

Obviously, the next step is to use a full partial differential

equation for the modeling parameters. The modeling which has become

popular in not only academic research but also engineering applications

is a two-equation model. Oneof the most frequently used two-equation

model is the k-g model first proposed by Harlow and Nakayama(1967) and

developed further by manyothers (Jones and Launder, 1972; Ng and

Spalding, 1972). Also numerousother two-equation models have been

suggested including a k-_ 2 model developed by Wilcox and Rubesin (1980)

especially for compressible flows. Most of these two-equation models

employ a modeled form of the turbulent kinetic energy equation but use a

different dependent variable for the second model transport equation

from which the length scale is determined. The disadvantage of two-

equation models is the need to makeassumptions in evaluating the third-

order turbulent correlations in the transport equations.

A Reynolds stress equation model which does not utilize the

Boussinesq assumption about turbulent viscosity was pioneered by Rotta

(1951) and has been enhancedby Hanjalic and Launder (1972) and many
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others. Recently, a large eddy simulation approach which is not based

on the Reynolds equations was developed by Deardorff (1970). However,

these last two types of models must be refined and tested further before

they can be used for engineering predictions.

Transonic turbulent flow is believed to be affected strongly by

upstream history effects in the neighborhood of a shock wave. For such

flows, two-equation models have been used extensively because they were

believed to have a better chance of predicting overall flow structure

correctly than local equilibrium models. Surprisingly, most of

calculated results of various two-equation models (Coakley and Viegas,

1977; Viegas and Coakley, 1978; Viegas and Horstman, 1979) are not

necessarily superior to those of lower-order models. Meanwhile, several

one-half equation models have been developed mainly in order to account

for nonequilibrium effects and their predictions generally provide a

definite improvementover those from algebraic models. In the present

study, the zero equation and the one-half equation models were used and

they are described in detail in the following sections.

3. Algebraic model

Prandtl (1926) proposed the following mixing-length formulation:

_t = P£2i_y' (2.45)

where £ and £1_u/ay I can be thought of as the characteristic length and

......... J LfllS

model varies with the type of flow. For flows along a solid surface,

the boundary layer is usually divided into inner and outer regions for
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the evaluation of _.

In the inner region close to a solid wall, the mixing length is

believed to be proportional to the transverse distance from the wall as

_. = my (2.46)
i

where K is an empirical constant known as the von K_rm_n constant. A

value of m of about 0.41 provides good agreement with experimental data

taken in simple flows. This distribution of _. matches correctly withz

the fully turbulent layer of the inner region excluding the viscous

sublayer and buffer layer close to a wall. The expression for mixing

length become applicable over the whole inner region by using an

empirically determined damping function D, proposed by Van Driest

(1956).

_. = KDy (2.47)
i

where

+

D = I - exp(- AY-$+) (2.48)

+
and y is given by Equation (2.39). A value of 26 is generally used for

the damping constant A+. The expression given by Equation (2.48) is

valid only for flows with a negligible pressure gradient. When the

pressure gradient is sufficiently adverse as to cause separation,
w

becomes zero, then D given by Equation (2.48) will become zero so that

_t will be zero in the inner region. Such a problem can be overcome by

defining D based on the maximum velocity gradient rather than the wall

value as suggested by Pletcher (1978) and Carter and Wornom (1975).
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Then the damping function can be written as

½

-2 8u I ) A_+] (2.49)D = i - exp[-C_ _y max

There have been numerous variations suggested for the damping

function in order to account for effects of property variations,

pressure gradient, blowing, transverse curvature and separation (Cebeci,

1970, 1971, 1973; Kays et al., 1970; Pletcher, 1976). Following Cebeci

and Smith (1974) the damping function used in the present study is

where

2 ½
D = i- exp[-(_l_Ylmax ) AYe+N] (2.50)

Bw (p_)2p+]½
N = [i ii.8(_-) Pw (2.51)

In the outer region of a wall boundary layer, the mixing length is

often taken as proportional to the boundary-layer thickness. Another

common method is to use the kinematic displacement thickness instead of

boundary-layer thickness and the velocity at the outer edge of the

boundary layer as the length and velocity scales, respectively:

_. = =PUe6 k"to (2.52)

where _ is the Clauser constant and is observed to be about 0.0168 and

.t.

6,. is the kinematic displacement thickness defined bv

-;¢

6k = i r__ (i u__) dyr u
0 o e

(2.53)
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Cebeci and Smith (1974) also recommenda modification to include

the effect of low Reynolds number, based on the observation by Coles

(1962) as

1.55
= 0.0168 -- (2.54)1 +

where

i
= 0.55 [I - exp(- 0.243z2 - 0.298z)] (2.55)

and

Re8k
z = 42---_- 1 (2.56)

Here Re8k is the Reynolds numberbased on the kinematic momentum

thickness defined as

PwUe8k (2.57)
Re8k - Bw

where 8k is the kinematic momentumthickness defined by

8k = f r__ u__(l ur u - _-) dy (2.58)
0 o e e

The effect of this modification becomes negligible if Re8k is greater

than 5000.

As the freestream is approached near the edge of the boundary

layer, the turbulence becomes intermittent. Following Klebanoff's

(1954) observations, there are intervals of time when the flow is not

turbulent near the outer edge of the boundary layer and these intervals

become longer as the distance from the wall increases. Including this

intermittency factor to the expression for turbulent viscosity for the
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outer region, Equation (2.56) becomes

Vto = _PUe6k_ i (2.59)

where intermittency factor _. is given by
1

6 -i

[i + 5.5(_) ] (2.60)1

and _ is given by Equation (2.54). Note that the effect of the

transverse curvature was neglected since the boundary-layer thickness is

assumed small compared with the radius of the body. Deiwert (1976) used

the furthest point across the boundary layer where the velocity is zero

in place of usual y = 0 for the lower basis needed in evaluating 6k and

_. in order to avoid an unrealistically large length scale in the
1

reversed flow region. The effect of this modification proved to be

insignificant and was not used in the present study.

The above algebraic two-layer model will be referred to as the

Cebeci-Smith model hereafter. This Cebeci-Smith model is known to

predict rather poorly in separated regions and was not proposed for use

in such flows by its originators. This poor prediction is mainly due to

the assumption of local equilibrium which implies the neglect of the

effects of diffusion and convection of turbulence scales and assumes a

balance between the production and dissipation of the turbulent kinetic

energy. The sole reason for its use was for reference purposes, simply

to indicate the level of performance to be expected from algebraic

models which have been perfected for equilibrium or near-equilibrium

turbulent flows.
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4. Nonequilibrium turbulence model

The aforementioned algebraic model is based on an assumed

equilibrium between the mean motion of the flow and its local

turbulence. When the flow changes rapidly in the streamwise direction,

the turbulence may lag the mean motion. To account for this, models

have been developed to utilize transport equations for the turbulence

itself. The simpler of such methods use transport equations for

variables used in defining a turbulent viscosity, which then can be out

of equilibrium with the mean motion. It should be noted, however, that

the Reynolds stresses are tied to the mean motion through the Boussinesq

approximation and react immediately to changes in the mean motion, even

though the effect of this reaction is influenced by the extent of the

lag of the turbulent viscosity.

Such models typically employ partial differential equations to take

into account the effect of diffusion or convection of turbulence length

or velocity scales. Typical of such models is the two-equation model

(e.g., k-E model of Jones and Launder (1972) and k-_ 2 model of Wilcox

and Rubesin (1980)). Considering the added numerical complexity and

computational effort required to solve additional partial differential

equations, the improvement in predictive accuracy over algebraic models

has not been encouraging. On the other hand, the effect of flow history

on the turbulent viscosity can be approximated with an ordinary

differential equation, a so called one-half equation model, and such

models have proven effective within a limited range of applicability.
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One-half equation models are generally divided into two different

types. The first type is purely an empirical relaxation or lag model.

The models of this kind are actually equivalent to one-dimensional

versions of transport equations for the quantities concerned except that

these transport equations are not generally derivable from the Navier-

Stokes equations. Included in this type are a relaxation form of an ODE

for _t itself proposed by Shang and Hankey (1975) and an ODE for length

scale in the outer region suggested by Pletcher (1978). The other type

utilizes a reduced form of the transport equation for turbulent kinetic

energy to define one of the turbulent characteristic scales (McDonald

and Kreskovsky, 1974; Chan, 1972).

Very recently, Johnson and King (1985) suggested a new one-half

equation model in which the velocity scale is governed by an ODE

derivable from the turbulent kinetic energy equation. This model will

be referred to as the Johnson-King model and is described below.

The turbulent viscosity is assumed to have a functional form of

_t = _to [I - exp(- _ti.] (2 61)
_to )

where _ti and _to can be thought of as describing the turbulent

viscosity in the inner and outer parts of the boundary layer. Equation

(2.61) provides a smooth implicit blending of turbulent viscosities in

two regions instead of an explicit change at the boundary of two

regions.

The inner turbulent viscosity is given by
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= pD2Ky( ' 'm)½_ti -u v (2.62)

where the damping function D is the same as given by Equation (2.50)

except that A+ is assigned a value of 15 instead of 26. This adjustment

4
was suggested by Johnson and King (1985) to provide y -dependency

3
instead of y -dependency of _t in the near wall region. Compared with

the algebraic Cebeci-Smith model, the major difference is that the

velocity scale is based on (-u'v' )½, which is provided by the solution
m-

2

of an ODE. Perry and Schofield (1973) suggested that (-u'V'm) provided

a much better velocity-defect correlation than did the friction velocity

u for flows with adverse pressure gradients.

The outer value of the turbulent viscosity gto is given by

_to = °(x)aUe6k_i (2.63)

where a(x) is an unknown parameter which varies with streamwise

distance. This form of the outer turbulent viscosity is identical with

the Cebeci-Smith model except for the appearance of o(x) which becomes

necessary to make the turbulent viscosity consistent with the local

flow. In other words, values of o(x) are determined so that -u'v'
m

resulting from use of _t and the mean velocity profile coincides with

the value given by the ODE. In this way, the nonequilibrium effect

expressed through -u'v' can be felt in the outer region as well as in
m

the inner region. The details are discussed later.

The streamwise distribution of -u'v' is determined from the
m

solution of an ordinary differential equation which is derived from the
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turbulent kinetic energy equation using assumptions similar to those

used by Bradshawet al. (1967). The equation for the transport of

turbulent kinetic energy for a steady compressible boundary layer is

given by

_k _k , ,_u _
PU_x + pV_y : -pu v _y + _y[_y(k +_r2)]

_y (pkv---_+ PV--_) - P_d (2.64)

where k is the turbulent kinetic energy and is defined as

I
k = _ (u'.u'.)11 (2.65)

and gd is the rate of dissipation of the turbulent kinetic energy and

can be approximated as

_u_ 2
l

Ed = _(_x. )
J

(2.66)

Assuming the path of the maximum turbulent kinetic energy is

continuous outside the viscous sublayer and is nearly coincident with

the x coordinate, Equation (2.64) can be specialized for the maximum

turbulent kinetic energy k and reduced approximately to the following
m

form:

dkm _ _u[ i _ -- --
U -- U V --
m dx m _y[ P 3y(pkv' + pv') - Zd,m

m

(2.67)

Here, subscript m denotes that the quantity is evaluated where k is

maximum in the y direction across the boundary layer, in the above

equation, the additional assumption has been made that -u'v' becomes
m

maximum where k is maximum.
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Following the analysis of Bradshawet al. (1967), additional

parameters are defined as
3/2

' ' (-u'v' )
"UVm m

al = k L =m
m d,m

(2.68)

Here L corresponds to a dissipation length scale. To simplify the
m

above equation, a I is assumed to be constant. Experimental data suggest

that a I varies between 0.2 and 0.3 and it is reasonable to assume a I to

be a constant. A value of 0.25 for a I was suggested by Johnson and King

(1985). Different values of aI were also used in the present

calculations, and the effect of varying aI will be discussed in a later

section. Using Equation (2.68), Equation (2.67) can be rearranged to

give

, _u , ,m)½ ald al(-U'V'm) [L (-u v
dx (-u V'm) = L u m _y u Dm]

m m m

(2.69)

where D represents the diffusion term in Equation (2.67).
m

The first term on the right hand side of Equation (2.69),

Lm(_U/_Y) Im, can be interpreted as the square root of the turbulent

shear stress that might result when convection and diffusion effects are

negligibly small. Thus, this term is replaced as

Lm _--Ul_Yl= (-u'V'm,eq)½ (2.70)
m

This quantity is determined by the equilibrium turbulent viscosity

distribution given by
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_t,eq = _to,eq [I
exp(- pti,eq)]

_to,eq

(2.71-a)

= , ,eq) ½_ti,eq pD2Ky(-u'v m (2.71-b)

Pto,eq = =Ue6kgi (2.71-c)

The dissipation length scale L is determined as
m

Lm = 0.4 Ym for Ym _ 0.225 6 (2.72-a)

L = 0.09 6 for Ym > 0.225 6 (2.72-b)m

The turbulent diffusion term D must also be modeled in order to
m

solve Equation (2.69). This turbulent diffusion term seems to be

important in the region where the flow is recovering toward an

equilibrium state. Johnson and King (1985) proposed the following form

of D based on the bulk convection hypothesis of Townsend (1976):
m

3/2

D Cdif(-u'V'm) ½= Ii - o (x) I
m a16[O.7-(y/6)m]

(2.73)

where Cdi f is a modeling constant and its suggested value is 0.5.

In order to solve Equation (2.69), it is convenient to define new

variables :

8 = (-u'v' )-½
m

= -½
8eq ('u'V'm,eq) (2.74)
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Finally, Equation (2.69) can be rewritten in terms of new variables as

follows:

d8 al 8 Cdi f L I
(i --- + m II - o(x)_L}

d-x - 2u n 8 a16[O.7-(y/6)m]m m eq

(2.75)

Equation (2.75) is nonlinear because of the appearance of local

parameters as coefficients of 8. Equation (2.69) is linearized by

simply using values of those quantities from the previous x station

(lagging). Also, in Equations (2.62) and (2.71-b), the values of

i , i

eq ) _ti are(-u'v')2 and (-'u'v 2 required to determine and Pti,eqm- m,

obtained from the previous x station.

Initial conditions for 8, 8 and o(x) must be provided before
eq

Equation (2.75) can be solved. The flow upstream at the point where

this nonequilibrium model starts can be assumed to be in an equilibrium

state so that Pt = Pt,eq" Therefore, the initial condition is given as

at x = x u'v' = u'v' (i.e., 6 = B ) (2.76)
o' m m,eq eq

0(x) = 1.0

where -u'v' can be easily provided by any equilibrium turbulent
m,eq

viscosity model such as the Cebeci-Smith model. The starting point, Xo,

for this closure should not, obviously, be where the Reynolds stress is

expected to change rapidly. Therefore, all calculations were initiated

using the Cebeci-Smith model from the leading edge and a switch was made

to the Johnson-King model at the beginning of the viscous-inviscid

interaction region.
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The variable o(x) provides a close tie between the turbulent

viscosity across the whole boundary layer and the ordinary differential

equation for the maximumReynolds shear stress. The appropriate value

of o(x) can be obtained through an iterative process by requiring that

-u'v' obtained from the velocity profile and turbulent viscosity agreesm

with -u'v' determined from Equation (2.75). To evaluate _t'm

specifically _to' an initial guess for o(x) is necessary to begin the

iteration process. Normally, the value of o(x) from the previous

station was used. Then the intermediate distribution of Bt' noted by

_t' is determined by Equation (2.61) and the distribution of Reynolds
.t. ._¢

stresses, -u'v'", based on _t is calculated as

.... :_ 8u
-pu_v"v'" = Bt @y (2.77)

If -u'v'" obtained by Equation (2.77) is different from -u'v'
m m

determined from Equation (2.75), the value of o(x) must be modified.

! !

The velocity gradient at the point where -u v becomes maximum is then

given by

! !

B.__u] _ -pu v m
8y *

m _t,m

(2.7s)

The turbulent viscosity which gives the same maximum Reynolds stress

obtained by Equation (2.75) should be

-pu V -u V

_ m = ______mm *
t,m i)u --_, l_t

-U V m
m

(2.79)
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The newvalue of o(x) can then be determined by letting

_t,m (O) = _t,m (2.80)

Since the expression for _t is nonlinear in terms of o(x), the solution

to Equation (2.80) has to be determined by a numerical method. In this

study, the simple Newton-Raphson method was applied as

k

k+l k _t_m _t,m

_to,m = _to,m - a_ k

_to m

where superscript k is the iteration level for the Newton-Raphson

(2.81)

k+l

method. The converged value of _to,m becomes (_to,m)new and new

value of o(x) is given by

(_to,m)new
a =

new °old (gto,m)old

Since _t,m

.i.

in Equation (2.79) is still dependent on _t,m'

(2.82)

i.e., the old

value of o(x), this procedure of determining 0(x) needs to be

iteratively repeated.

The solution procedure for this closure can be summarized as

follows:

i) For x < x the flow is assumed to be in equilibrium so that the
O'

turbulent viscosity is provided by the Cebeci-Smith model.

2) At x = Xo, initial conditions are given by Equation (2.76) and

t !

-u v is determined by the Cebeci-Smith model.
m,eq

3) For x > Xo, _t,eq and -u'V'm,eq are determined by Equation (2.71).

Also, 0(x) is lagged and -u'v' is calculated by Equation (2.75).
m
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4) Bt is calculated by Equation (2.61) and -u v is determined by
m

Equation (2.77) using Pt and the velocity profile.

5) If -u'v' _ ' '-u v m' the new o(x) is calculated by Equation (2 82)m

and step (4) is repeated. Otherwise the procedure moves to step (6).

6) The turbulent viscosity is determined by Pt = Pt

This Johnson-King model has never been tested for a wide range of

flows, but appears to be very effective in predicting both pressure

driven and shock induced separated flows in the present study. However,

this model still needs improvement in order to provide a better

prediction and this will be discussed in a later section.

Before closing the discussion of turbulence modeling, it should be

noted that for turbulent flows, transition from laminar to turbulent

flow was assumed to occur at a fixed point near the leading edge and no

particular formula for the transition point was used. Also, the

apparent turbulent heat flux is modeled by Equation (2.44) with a

constant value of the turbulent Prandtl number equal to 0.9.

F. Mathematical Model

Although the boundary-layer equations given by Equations

(2.24)-(2.26) are believed to describe the compressible turbulent

boundary layer fairly well, they are not in the best form to be solved

numerically. The additional modifications and transformations used

prior to obtaining the numerical solution are described next.
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i. Prandtl's transposition theorem

The shear-layer coordinate system has been adopted because of

several advantages pointed out in Section II. C. The difficulty

associated with the use of the shear-layer coordinate is that the body

surface does not lie along a coordinate line. According to Werle and

Verdon (1980), this difficulty can be avoided by using the Prandtl's

transposition theorem (1938). A detailed discussion of this theorem can

be found in a article by Glauert (1957). In this transposition theorem,

new variables defined by

A A A dt

x = x y = y + t v = v + U_x (2.83)

are introduced into the boundary-layer equations, where t is defined as

the distance between the shear-layer coordinate and the body coordinate

as shown in Figure 2.

After application of this transposition theorem, the form of the

boundary-layer equations does not change and the same boundary

conditions are maintained except for the appearance of a caret (A) over

x, y and v. Provided that the magnitude of t is only a fraction of the

boundary-layer thickness, the boundary-layer approximation remains

valid. The only differences are that the wall boundary conditions,

A
given by Equations (2.29) and (2.30), are prescribed at y = 0 in place

A
of y = -t and the velocity v is no longer the component of velocity in

the y direction but becomes the component of velocity normal to lines of

A
constant y. Therefore, the caret (A) will be dropped for x, y and v in

the equations to follow.
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2. Nondimensionalization

Variables in the boundary-layer equations are nondimensionalized as

X = x _L Re- ½L Y= R=L

uU = -- V = V--Re ½ I = H
2 (2.84)U U _ U

p = ___P__ _ : £_ _ = ___ _ _t
P®U 2 P_ _ t _

where Re is the Reynolds number based on the freestream value and L is

the reference length of unity. Also note that the tildes (~) over the

density and viscosities do not mean a mass-weighted average.

Using these nondimensional variables and Boussinesq's turbulent

viscosity and turbulent conductivity concepts (see Equations (2.40) and

(2.44)), the compressible boundary-layer equations for steady,

axisymmetric flows, given by Equations (2.24)-(2.26), become

continuity

_(_UR) + _-_(_VR) = 0 (2.85)

momentum

dU
_,,au ~,,au e 1 a _ au
pu_-_ - pv_-_ = _eUe _- + _ _[R(u + _t)_-_] (2.86)

ene_

~..aI ~_.aI 1 a .... _ _t aI

- - +F rt)

i _ I ._ .au
+ R[(1 - rrA-/--)_ + (1 - A----)_t]u_) (2.87)
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The corresponding boundary conditions, given by Equations

(2.28)-(2.31), can be rewritten as

at X = 0, U = 1.0 V = 0 I = I (2.88)

at Y = 0, U = V = 0 (2.89)

I = lw or _ specified
W

as Y + _, U + Ue I _ le (2.90)

3. Coordinate transformation

The boundary-layer equations in the form of Equations (2.85)-(2.87)

are formidable nonlinear coupled partial differential equations even for

a very simple geometry. Therefore, there have been a number of efforts

to simplify the equations, especially in the pre-computer era. Among

these earlier works, a number of transformations relating compressible

boundary layers to equivalent incompressible flows can be found useful

even today.

The density variation can be accounted for by using a stream

function, but the variable viscosity requires the introduction of a

second similarity type variable. It was discovered by Illingworth

(1950) that it was convenient to account for viscosity and density

effects separately in the similarity variables. Lees (1956) combined

the Illingworth transformation and Mangler transformation (1948) for

axisymmetric flow and this transformation is often called the

Illingworth-Levy-Lees-Dorodnitsyn transformation. This transformation
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was modified by including the transverse curvature terms following the

lead of Probstein and Elliott (1956). Such a transformation was used by

Cebeci and Smith (1974), Carter (1978, 1981) and Lee and Pletcher (1985)

for the analysis of compressible turbulent flows.

The stream function for compressible axisymmetric flow is defined

as

= _ a_,= UR (2.91)
_X _Y

Use of equation (2.91) replaces the continuity equation.

type independent variables are defined as

The similarity

X U Y

: I _eUeR2dXe_o _ : e j p_RdY
0 0

(2.92)

where the normalizing function, g($), can be chosen arbitrarily. This

transformation removes most of the effects of compressibility from the

governing equations. Following lllingworth's work, when the direct

method was used, g(_) is given by

g($) = (25) ½ (2.93)

so that the singularity at $ = 0 can be removed. As a result, the

calculation can be started without difficulty at a leading edge or at a

stagnation point. When the inverse method was used, g($) was taken to

be equal to the displacement thickness (Carter, 1978). This choice

tended to keep the number of grid points within the boundary layer

nearly constant.



84

Defining new dependent variables,

U I
F = -- G=--U I

e e

Equations (2.85)-(2.87) become

continuity

(2.94)

(2.95)

momentum

2_8F 8_ 8F

g _ - g_ 8_

8 _t 8F
- g2B(G - F 2) + _[C£(I + _-)_] (2.96)

energy

C_ _t Pr .8G.

2_8G 8_ 8G _ 8 [_r(l + _ ___rt)_]g F_ - g_ 8_ 8_

+ CE 8__{Cg[( 1 _ I 1 _t 8F
811 P-rr) + (1 - _--_rt)_"-]F-_}

where the nondimensional pressure gradient parameter, B, and the

Chapman-Rubesin (1949) type parameter, C£, are defined as

(2.97)

dM 2
I e = p]/ R__

= M- d_ C£ (R) (2.98)
e PeMe o

and assuming H is constant, the Eckert type parameter CE is given by
e

U 2 (_'-i) M 2
e e

CE = -- = )M eI I + 0.5(_-i 2
e

(2.99)

Care must be taken in evaluating the convective terms in Equations

(2.96) and (2.97) at the leading edge when $ = 0. The limiting value of
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2a
g F_ terms is zero as $ _ 0; however, the g_ a terms in

Equations (2.96) and (2.97) has a finite limit as $ _ 0. To obtain the

most accurate numerical solution at the leading edge, a newdependent

variable, W, defined as

a_
w = - g($) _ (2.100)

was introduced into Equations (2.96) and (2.97) and the continuity

equation, Equation (2.95), was reformulated from Equation (2.85) using W

instead of *. This procedure was used only at the leading edge. The

stream function formulation given by Equations (2.95)-(2.97) was used

thereafter. The details of solution procedure at the leading edge are

quite similar to those used for the stream function formulation and will

not be discussed further.

This transformation was not used to solve the transport equation

for the maximumReynolds stress in the Johnson and King turbulence model

because that transport equation is an ordinary differential equation and

the transformation offered no advantage.

The corresponding boundary conditions in the transformed

coordinates for Equations (2.95)-(2.97) are given as

At n = 0, F = @ = 0 (2.101)

G=G or
w a_l specified

w

As n _ _, F = G = 1.0 (2.102)

The definition of the displacement thickness, Equation (2.32), gives the

value of the stream function at the edge of the boundary layer as
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_e = g($) j e ( )d_ - m (2.103)
0 P

where m is the nondimensional mass flux defined as

m = _eUeRo 6 (2.104)

and _ is the nondimensional displacement thickness.

Equations (2.96) and (2.97) are parabolic and can be solved in a

forward marching manner in the streamwise, 6, direction as long as

F > O. In regions of reversed flow, i.e., F < 0, the correct marching

direction is the negative direction which is the true "streamwise"

direction. With flow reversal, the solution to the complete boundary-

layer equations can be advanced in the positive coordinate direction

only iteratively and velocities in regions of reversed flow must be

stored. In each iterative sweep, the correct difference representation

for convective terms is provided through windward differencing which

honors the appropriate marching direction. This method has been used

successfully by many investigators (Klineberg and Steger, 1974; Carter

and Wornom, 1975; Cebeci, 1976).

On the other hand, a much simpler alternative to the multiple sweep

procedure was proposed by Reyhner and FiHgge-Lotz (1968). According to

their suggestion, which is known as the FLARE approximation, the

streamwise convective term F_/_ is replaced by CIFI_/_ _ where C is

zero or small positive constant if F < 0 and one if F _ O. This term

has been observed to be very small in regions of reversed flow. The

validity of the FLARE approximation in the case of small separation
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regions has been demonstrated in many calculations (Carter, 1974;

Williams, 1975; Cebeci et al., 1979; Kwon and Pletcher, 1981) and also

confirmed by the experimental observations of Simpson et al. (1974).

Recently, Davis and Carter (1984) showed that the FLARE approximation

still gives results comparable to those obtained from the windward

differencing scheme with reversed flow velocities even up to 28% of the

edge velocity. Throughout the present study, the FLARE approximation

was used for most of the calculations. The windward differencing scheme

was also employed, but only for limited cases for purposes of

comparison.

G. Numerical Method

This section describes the method used to solve the boundary-layer

equations developed in the previous section. The continuity and

momentum equations were solved in a coupled manner using a fully

implicit finite-difference scheme. This results in a block tridiagonal

system with the blocks being square matrices of order 2. Kwon and

Pletcher (1981) reported that coupling of the continuity and momentum

equations eliminated the wiggles in the regions of separation which

appeared in the solution when an uncoupled scheme was used. The energy

equation and the additional transport equation used in the Johnson and

King turbulence model were solved in an uncoupled manner.

Following a discussion of the computational grid, the finite-

difference discretization and solution procedures will be presented.
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i. Computational grid

A representative example of the finite-difference grid used for

this study is shown in Figure 4. However, the mesh shown in Figure 4 is

much coarser than those used in the actual calculation. The i index is

used to specify the X-position. The point i = i corresponds to the

leading edge. The j index is used to specify the Y-position with j = i

corresponding to the points at the wall and j = NJ corresponding to the

points at the outer edge of the computational domain. The formulation

of the grid can have a significant effect on the convergence and

accuracy of the solution. The optimum method of grid formulation is

usually achieved through trial and error and is different depending on

the flow case. For laminar calculations, an equal grid spacing was used

in the normal (_) direction. For turbulent flows, wall functions were

not used and the turbulence model was applied directly to the wall as

pointed out earlier. Therefore, a variable _ grid spacing was used so

as to have more grid points concentrated near the wall and to avoid an

excessive number of grid points.

In this study, the grid scheme proposed by Cebeci and Smith (1974)

was employed. This scheme maintains a constant ratio between two

adjacent grid increments as

A_+

A-_-- = K (2. 105)

where K is constant. In some cases, the accuracy of the solution was

somewhat sensitive to the value of K used. A value between 1.05 and

i.i0 generally gave the most reliable results. In all turbulent cases,
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the grid increment nearest the wall, A_ I (= _2 - _i )' was chosen so that

the corresponding Ay + did not exceed 1.0, and a number of mesh points,

usually i0, were placed within the viscous sublayer.

Variable grid spacing was used in the streamwise ($) direction for

both laminar and turbulent flows with most of the points concentrated in

the region where the strongest pressure gradient was expected. A good

example of this would be the concentration of points near an

experimentally observed shock position. The simultaneous viscous-

inviscid interaction method requires the same grid spacing in $

direction for both the boundary-layer equations and the potential

equation. On the other hand, the two grids can be independent when the

semi-inverse viscous-inviscid interaction method is used although the

same grid was generally used in the present study. The grid spacing in

the $ direction was generated using a stretching transformation similar

to the one proposed by Roberts (1971). This will be discussed in detail

in the inviscid analysis section. Outside of the interaction region,

the streamwise grid spacing was chosen so as to be approximately

proportional to the thickness of the boundary layer. A typical mesh

size used I00 increments in the streamwise direction and 50 to 70 in the

normal direction.

2. Finite-difference representation

The set'of nondimensionalized boundary-layer equations in the

transformed coordinates discussed in Section II. F was solved over the

region of interest using a fully implicit finite-difference method. In

this section, the finite-difference scheme employed to solve the
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boundary-layer equations and the equation for turbulence modeling is

described.

There have been many finite-difference methods proposed to solve

the boundary-layer equations. These can be generally divided into

explicit and implicit methods. The explicit method is simple but is

often constrained by a stability condition, i.e., suffers from a severe

limitation on marching step size. On the other hand, most implicit

schemes in common usage are inherently stable. Among them, the Crank-

Nicholson implicit scheme is second-order-accurate in both the

streamwise and normal directions but barely satisfies the stability

condition. This procedure has occasionally been found to be unstable

for turbulent flows (Anderson et al., 1984). The fully implicit scheme

used in the present study is first-order-accurate in the streamwise

direction and second-order-accurate in the normal direction and is also

unconditionally stable. When the fully implicit scheme is used,

linearization and possible adjustments in the differencing in order to

maintain diagonal dominance must be dealt with as in any other implicit

scheme. The linearizing procedure is given in the next section.

a. Continuity and momentum equations The finite-difference

representation of the continuity and the momentum equations is given as

follows.

continuity

g._i _i i _ .i i

2t_j + _j_l ) = A-__t_j - *j_l ) (2.i06)
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momentum

With the FLARE approximation,

2 i _ i

Cg IFj I6$Fj
i F i - F i2 _ _ "

g6$_j 6 = g2B(Gi ) + 6 (N..±6 Fl.)
n ] J 3 3_2 _ 3

where C = i if F > 0 and C = 0 if F < 0.

With the windward differencing,

2 i_ _i _ i 6 F i_ i F i2_ _- -* i
g Fj0_j - g6_*j n 3 = g2_(Gj - 3 ) + 6n(N'3*2'x6_F')j

where 6, 6 and 6 are central, backward and forward difference

representations in the directions indicated by the subscript,

respectively.

(2.107)

(2.108)

(An++An_)[A-_+(%j+l - %j) + _ - _j_l )1

6 Cj - A_+(¢j+I j)

i i i i

6n_ j = A--__(%j - _j_l )

where _ is a general dependent variable. A similar representation

applies to the operators in the $ direction.

The double arrow notation in Equation (2.108) on the $ difference

operators means that the difference is always upwind, which is a

backward difference when F > 0 and a forward difference when F < 0.

nondimensional diffusion coefficient Nj+½ was evaluated as the

arithmetic average of these quantities at neighboring integer grid

points as

(2.109)

The



where

N. i i
J+2 = _(Nj + Nj+I) (2.110)

_t

N. = [C£(I +_-)] (2 111)J j

When the continuity and momentum equations are solved in a coupled

manner using an inverse procedure, four variables, F, _, g and B are

generally treated as unknown quantities, while flow property variables

like G, p and _ are regarded as known quantities because they are

supplied from solutions of the uncoupled equations. Since these unknown

variables are included in the coefficients at ith level, the finite-

difference equations, Equations (2.106)-(2.108), are algebraically

nonlinear. There are several ways to linearize these equations, as

discussed in Anderson et al. (1984). Kwon and Pletcher (1981), who

studied the effect of several linearization methods for separated flows,

reported that among the methods considered only the Newton linearization

with coupling of the continuity and momentum equations resulted in a

well-behaved solution when large separation regions occurred. The

Newton linearization with coupling is also believed to accelerate the

convergence of the iterative solution (Keller and Cebeci, 1972; Carter,

1978; Kwon and Pletcher, 1981).

In the present study, the Newton linearization with coupling was

used on the nonlinear terms in Equations (2.106)-(2.108). The density

and the diffusion terms were iteratively updated after solutions of the

energy equation and the turbulence modeling equation were obtained. The
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Newton linearization treats the terms which cause the nonlinearity as

= _ + 6_ (2.112)

where _ is a provisional value from a previous iteration level and 6_ is

a change in _ between two iterative solutions. First, every unknown

variable in Equations (2.106)-(2.108) is replaced by Equation (2.112)

and the simple multiplication procedure is carried out. Then terms of

power greater than the first in 6_ are dropped, and the equations become

linear. The provisional values are established by initial guesses for

the first iteration and are then iteratively updated at each streamwise

station. Whenthe convergence is achieved, i.e., 6_ becomesnegligibly

small, the solution advances to the next streamwise station. The

convergence criterion for this local Newton linearization procedure is

based on the maximumchange in F's and _'s between two successive

iterations, i.e,

Ec Z MAX []6F.I , t6_.l/_e ] (2.113)
J J

-3
and _ was set equal to I x i0 in all the present calculations.

c

The conventional way of providing the initial guess for the

provisional value is using the value from the converged solution at the

previous station (lagging) and 5-10 iterations were usually required for

local convergence in compressible flows. Sometimes, 20-30 iterations

were required near the point of separation. In the simultaneous

viseous-inviscid interaction method, the viscous calculations take most

of the computing time and a large number of local iterations due to the
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linearization is undesirable. It was possible to reduce the number of

iterations in the simultaneous viscous-inviscid interaction procedure by

using a pseudo-time dependent approach, that is, the initial values were

taken from solutions of the previous interaction sweep if the overall

interaction process was reasonably converged. Convergence for the local

Newton linearization procedure was usually obtained if the level of

convergence error for the overall interaction process was less than 5%.

The convergence criterion for the overall interaction procedure is based

on the relative change of the nondimensional mass flux m (see Equation

(4.2)). For the first few, usually i0, global interaction sweeps, the

initial guesses for the first provisional values were provided

conventionally and then switched to the pseudo-time dependent approach.

Although this remedy required additional storage for dependent

variables, F, _ and G, over the interaction region, this proved to be so

efficient that it required only 2-3 iterations at each streamwise

station. Thus, the total computing time was reduced to only about 20%

of that needed when lagging from the previous station is used. However,

in the semi-inverse interaction method, the savings in computing time

was relatively small because the inviscid calculations took the largest

portion of the total computing time.

Using the Newton linearization with coupling as described above,

Equations (2.106)-(2.108) can be written as

_i _i i i

bj_j_ 1 + d._.jJ - _j + _j_l = hj_ + sjg + cj (2.114)

i ° i i

BjFj_ 1 + D.F_ + + = HjB + + Cj j AjFj+ I EjOj Sjg j
(2. 115)
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The coefficients in the above equations, which are assumedknownfrom

the solutions of the previous (i-l) station and previous interaction,

are given in Appendix A for both the FLAREapproximation schemeand the

windward difference scheme.

The appropriate boundary conditions must be given in a discretized

form in order to complete the finite-difference system of governing

equations. At the wall surface, Equation (2.101) becomes

F1 = _I = 0 (2.116)

In order to maintain the sameform as the coefficients of the blocks for

2 N j N NJ-I, the coefficients are specified as

AI = B1 = HI = S1 = CI = bI = sI = hI = cI = 0 (2. l17-a)

D1 = E1 -- dI = 1.0 (2.117-b)

At the edge of the boundary layer the continuity equation still

holds and FNj = 1.0 should be represented in Equation (2.115) by

choosing

ANj = BNj = ENj = HNj = SNj = 0 (2.118-a)

DNj -- CNj = 1.0 (2.118-b)

The procedure concerning the additional conditions required for the

direct and inverse methods will be given in Section II. G. 3.

b. Energy equation As was the case for the momentum equation,

convective terms in the energy equation require appropriate treatment to
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make forward marching possible in regions of reversed flow. The FLARE

approximation was generally used, but windward differencing was also

used for the purpose of establishing the validity of the FLARE

approximation.

With the FLARE approximation,

i _ i G_ + _ i
Cg21F_l - 6 = 6 (El, +J 6_Go g6_j _ J j+½6 Gj) CE6 Ne,j+ ½

With the windward differencing,

2 i_ i _ i _ i

g Fj6_Gj - g6_j 6 G_ = 6 (N 1 ..16 G.) +,J*2 _ ] CE6_N2,j+_ _

where

C_ _tPr

NI,j+ ½ =_-rr (I + _--_trt)j+½

1 1 ._t. FBFI
N2,j+ ½ = C_[(I - _r) + (i - _rt)_- j _-_1 j+½

(2.119)

(2.120)

(2.121-a)

(2.121-b)

Since the continuity and momentum equations were solved first

uncoupled from the energy equation, the velocity variables, F and _,

were known. Because of this, the energy equation is linear in G except

for the density and the viscous diffusion terms which can be iteratively

updated. However, since the diffusion coefficients in the momentum

equation are also strong functions of temperature, the energy equation

was solved iteratively together with the iterative solution procedure

for the continuity and momentum equations.

By grouping coefficients of the unknown G's, Equations (2.119) and

(2.120) can be rewritten in tridiagonal form as
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G_ + D G_ + i
Bj j-1 j ] AjGj+I C. (2.122)

3

The coefficients are known from intermediate solutions of the continuity

and momentum equations and the solution of the energy equation at the

previous station and are given in Appendix B. These algebraic equations

can be easily solved using the Thomas algorithm.

Boundary conditions for the energy equation should be prescribed in

a finite-difference form. When enthalpy is fixed at the wall,

B I = A I = BNj = ANj = 0 (2.123-a)

D I = DNj = CNj = 1.0 C I = Gw (2.123-b)

If the heat flux is given, a Taylor series expansion or polynomial

fitting can be used to obtain the appropriate finite-difference

expression. However, enthalpy was always specified at the wall in the

calculations of the present study.

c. Johnson and King turbulence model The transport equation

for the maximum Reynolds stress given by Equation (2.75) is discretized

with a first-order-accurate backward finite-difference approximation.

6x ei = N3_8i + N4 (2.124)

where

aI

N3 = - 2u L 8
m m eq

(2.125-a)

Cdi f Lm i

Il-o(x) 2 !} (2. 125-b)N4 = - N30eq{l +
a16[0.7-(y/6) m]
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This equation can be rewritten simply as

8i = A.8 i-I + B.
1 1

where

I N4Ax
A. = B. =

i i N3Ax i I - N3Ax

(2.126)

(2.127)

Using an initial condition given by Equation (2.76), Equation (2.126)

can be easily integrated along the x coordinate. During the Newton

iteration process for the continuity and momentum equations at each

local station, Equation (2.126) is also repeatedly solved.

3. Method of solution

In this section, the solution procedure for the boundary-layer

equations is presented. As discussed in Section II. G. 2, the

continuity and momentum equations are solved in a coupled manner and the

energy equation and the transport equation arising in the Johnson-King

turbulence model are solved in an uncoupled manner. The pressure

gradient, B, is evaluated either d_rectly using the specified edge

velocity (direct mode) or indirectly through the specified mass flux, m,

(inverse mode). The parameter m is also either known explicitly from

the interaction law (semi-inverse procedure), or determined implicitly

during the solution procedure coupled with the inviscid scheme

(simultaneous procedure).
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Equations (2.114) and (2.115) can be rewritten for j = 2 to NJ-I as

[0 i]LBj __ + Dj E. + A. IF]+II = H B+Sjg+Cj

J L. J-lJ J L*_J L_j+12 $+sjg+cjJ

(2.128)

For a given $ station, these equations form a block tridiagonal system

with each block consisting of a two by two matrix as

[D]I [A]I [0]

[-B]2 I-D]2 [7]2 [0]

[0] [B]j [D]j [A]j [0]

[0] [B]N J [D]N J

where

[u]1

[U] 2

[u]3

I
[i]J

I
I[U]Nj !

[C] 1

[C] 2

i[C]3

:1
IilJ
[C]Nj

(2.129)

[A]j [:j0]lj0[_]j =

o j I
I -i

Dj E._ J

[D]j =

j -i

[u]j
= [HjB + Sjg + Cj]

hjB + sjg + cj

U

The coefficients in Equation (2.130) are listed in Appendix A.

(2.130)
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Equation (2.129) can be solved by using an efficient form of a

block elimination procedure which is known as the modified Thomas

algorithm (Blottner, 1975). After elimination of the lower diagonal

terms, [_]j, and rearrangement, the equations are reduced to a

bidiagonal recurrence form as

F = A F + H B + S g + C (2.131)
j j j+l j j j

*_= a_F_+l + hjB+ sjg+ cj (2. 132)

for j = 1 to NJ-I. The coefficients in Equations (2.131) and (2.132)

are given in Appendix C.

Using the no slip boundary condition at the wall, given by Equation

(2.117), the coefficients at j = 1 in Equations (2.131) and (2.132)

becomes

A 1 = H I = S 1 = C 1 = a I = h I = s I = c I = O (2.133)

Then the coefficients at 2 S j S NJ-I in Equations (2.131) and (2.132)

can be calculated from the wall to the outer edge of the computation

domain as discussed in Appendix C.

With boundary conditions at j = NJ, given by Equation (2.118),

Equation (2.132) becomes

i

FNj = 1.0 (2. 134)

i * "" *
_TT = h_6 + s .g + c... _ .... 5)

Therefore, if the pressure gradient, 8, and g(_) are known, solutions
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for F's and _'s across the computational domain can be obtained by the

simple back-substitution procedure starting from the edge of the

boundary at j = NJ using Equations (2.134) and (2.135) and proceeding

toward the wall to j = i using Equations (2.131) and (2.132).

In the direct mode, the pressure gradient, B, is determined by the

edge Mach number, M which can be easily calculated from specified edge
e'

1

velocity, U and g(_) is defined as (2_) 2 where _ is fixed at each X
e'

location because $ is a function of X and U only.
e

In the inverse mode, if g($) is set equal to m, the value of _e

given by Equation (2.103) can then be written in a finite-difference

form as

*Nji = m(Ip I) (2.136)

where

I = f e ( )drD (2.137)
P 0

The integral value I is iteratively updated since the energy equation
P

is solved uncoupled. Also, Equation (2.135) becomes

i * * *

= hNj_ + + (2. 138)$NJ sNjm CNj

i
Elimination of _NJ from Equations (2. 136) and (2. 138) results in

B = avm + bV (2.139)
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J,-UJ

where

a V = (I - i - / b V / (2.140)p SNj) hNj = _ CNj hNj

This equation describes the asymptotic relationship between the

pressure gradient and the mass flux, m, in the finite-difference form of

the boundary-layer equations. If the value of m is known as in the

semi-inverse interaction method, B is thus determined and the solution

can be obtained through the recurrence formulas, Equations (2.131),

(2.132), (2.134) and (2.135) as in the direct method. In the

simultaneous interaction method, the value of m is regarded as an

unknown quantity and is determined so as to satisfy an additional

relationship between B and m obtained from the inviscid analysis. This

additional relationship and the associated numerical details will be

discussed in Chapter IV.

Since the Newton linearization is used, the solution of the

boundary-layer equations is repeated iteratively. Therefore, the

coefficients in Equations (2.128)-(2.140) must be updated using the most

recent solutions and the solutions obtained from Equations (2.131),

(2.132) and (2.135) must converge in order to proceed to the next

streamwise station. The convergence criterion was given by Equation

(2.113).

This solution procedure can be summarized as follows:

I) Assume the initial distributions of F, _ and G across the

computational domain of the boundary layer using either lagging or

the pseudo-time dependent approach.
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2) Calculate the turbulent viscosity.

3) Calculate the coefficients in Equations (2.131), (2.132) and (2.135)

for the continuity and momentumequations.

4) In case of the direct mode, go to step (7). Otherwise, go to step

(5).

5) Determine the value of m in the inverse mode(see Chapter IV).

6) Calculate B using Equation (2.139).

7) Calculate the edge stream function, @NJ'using Equation (2.135) in

the direct modeand Equation (2.138) in the inverse mode,

respectively.

8) Calculate the solutions of F and _ across the computational domain

of the boundary layer using Equations (2.131) and (2.132) by means

of back-substitution.

9) Calculate the coefficients in Equation (2.122) for the energy

equation.

i0) Calculate the solution of G using the Thomasalgorithm.

ii) Examineconvergence of the solutions using Equation (2.113). If the

solutions meet the convergence criterion, proceed to the next

streamwise station. Otherwise, return to step (2).
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III. INVISCIDANALYSIS

In this chapter, the solution procedure for compressible inviscid

flow is described. The governing equations and the appropriate boundary

conditions are presented. The numerical methods used in solving the

governing equations are discussed. Numerical grid generation is also

presented. It should be noted that some of the variables used in the

inviscid analysis may be denoted by the same symbols as used in the

viscous analysis but the symbols may have different meanings. If this

occurs, they will be discerned by subscripts i and v for the inviscid

and viscous analysis, respectively.

A. Velocity Potential Equation

As discussed in Chapter II, viscosity effects in flows for

sufficiently large Reynolds numbers are confined to a thin boundary

layer near solid surfaces. As a result, the major portion of the flow

region, which is inviscid outside the boundary layer, is governed by a

much simpler set of equations. This reduced set of equations, called

the Euler equations, can be obtained by neglecting viscous terms in the

complete Navier-Stokes equations. The Euler equations consist of a set

of first order partial differential equations, generally 4 equations

(continuity, two momentum and an energy equations) for 2-dimensional

flows.

With an additional assumption of a st_dy, irrotationa! and

isentropic flow, the Euler equations can be further simplified to a

velocity potential equation (sometimes also referred to as the full
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potential equation). The velocity potential formulation results in a

single second order partial differential equation. If the flow over a

slender body is considered, where the freestream is only slightly

disturbed, the velocity potential equation can be simplified to form the

transonic small disturbance (TSD) potential equation. This formulation

provides the advantage of simplicity, especially in the application of

the wall boundary conditions. However, the TSD equation suffers

restrictions in applications because it is valid only for flows over a

thin body. Recent computational evidence (Hoist and Ballhaus, 1979;

Melnik, 1981; Green and South, 1983) suggests that the velocity

potential formulation is the most efficient one among the three (Euler,

potential and TSD) formulations in terms of accuracy to cost ratio for a

wide range of inviscid transonic applications.

Isentropic flow has been assumed in developing the potential

formulation, thus the entropy does not change across a shock wave

according to the potential solution. The actual entropy production

across the shock wave is proportional to the third power of the shock

strength based on the normal component of Math number (Liepmann and

Roshko, 1957) as

AS _ (M 2 1)3/2 (3.1)
n

Therefore, the assumption of no entropy change across the weak shock is

reasonable if the normal component of Mach number, M is close to one.
n

The velocity potential equation is generally regarded as a reasonable

approximation as long as the normal component of Mach number ahead of
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the shock wave is less than 1.3.

The potential equation can be written and solved numerically in two

forms known as the conservative and the nonconservative forms. South

and Jameson (1973) developed a numerical solution scheme for the full

potential equation in the nonconservative form using a line relaxation

algorithm. This method was implemented into the RAXBOD code by Keller

and South (1976) and the computational code has been used widely by many

investigators. Newman and South (1976) reported that the

noneonservative scheme generated a source of mass at the shock wave,

which was caused by switching from the upwind to the central

differencing without a proper transition operator. The strength of this

mass source is not unique and depends on the local mesh size. A

streamline pattern is deflected substantially by this effective mass

source downstream of the shock wave so that the global mass balance is

destroyed. As a result, the nonconservative scheme produces a weaker

shock located upstream of that which would be obtained by a result of

the Euler equations (Lock, 1981; Green and South, 1983). It should be

noted that the fortuitous good agreement between the nonconservative

scheme and experimental observations is due to the fact that this

effective mass production happens to simulate the interaction of the

shock wave and the viscous layer.

Use of the conservative scheme maintains the conservation of mass,

but often results in an overprediction of the shock strength (Steger and

Baldwin, 1972; Green and South, 1983). However, there is increasing

evidence by Melnik (1978, 1981) and Lax (1954) that a correct approach
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should be based on the conservative scheme with viscous interaction used

to correct the shock strength and position. In the present study, the

velocity potential equation in the fully conservative form is used to

describe the inviscid transonic irrotational flow.

With the assumption of a steady isentropic inviscid flow without

body forces or external heat transfer, the conservation laws introduced

in Section II. A are simplified as

continuity

-->

V" (pV) = 0 (3.2)

momentum anG energy

-_ --> --> -_

H = h + V'V _ _ p + V-V (3.3)
2 _'-1 p 2

According to Crocco's theorem, a steady, inviscid, adiabatic, isentropic

flow is also irrotational, thus permitting the use of a velocity

potential, ¢, defined as

-+

V = V¢ (3.4)

For the isentropic flow of a perfect gas,

P-- = constant (3.5)

P

a = (_RT) ½ (3.6)

where a is the speed of the sound in a perfect gas.
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I. Coordinate system

The coordinate system chosen for the present inviscid analysis is

presented in Figure 5. For axisymmetri¢ external flow, an axisymmetric

cylindrical coordinate system is used, where the abscissa, x, is

measured along the axis of symmetry and the ordinate, r, is measured in

the direction normal to the axis as shown in Figure 5. The velocity

components in the x and r direction are noted as u and v, respectively.

All the body configurations considered in this study are assumed to

extend from the inflow to the outflow boundary. A general computational

domain in physical coordinates looks like Figure 6.

2. Governing equations and boundary conditions

a. Governing equations The continuity equation can be written

in the aforementioned coordinates as

a

-_(pur) + _-_y(pVr) = 0 (3.7)

With the introduction of the velocity potential into the continuity

equation, the potential equation is given by

(P#xr)x + (P_rr)r = 0 (3.8)

b. Boundary conditions A solution of Equation (3.8) can be

obtained by prescribing proper boundary conditions along the boundaries

of the computational domain as shown in Figure 6.

In the far field with a subsonic freestream, all perturbations are

required to vanish as the flow approaches uniform conditions.
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r

_X

FIGURE 5. Coordinate system for the inviscid analysis
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Therefore, the potentials at the boundaries which are placed

sufficiently far from the source of disturbance can be assumed to be

held at the fixed values which are determined by the uniform freestream

condition. Assuming that the inflow boundary, noted as A-B in Figure 6,

is placed far upstream normal to the freestream velocity, u , the

boundary condition is expressed in terms of the velocity potential as

¢(Xo,r ) = 0 (3.9)

The outer boundary is also assumed to be placed sufficiently far

from the solid wall so that its effect upon the main structure of the

flow is negligible. Hence, the condition at the outer boundary, B-C in

Figure 6, is also given as a constant, uniform velocity. When the B-C

plane is parallel to the freestream, the velocity potential at r = r is
e

given as

¢(X,re) = u.(x - Xo ) (3.10)

The boundary condition at the exit of the computational domain, C-D

in Figure 6, needs a careful treatment for convergence of the solution.

Since the downstream boundary is positioned such that the outflow can

always be assumed to be subsonic, a boundary condition is required. The

downstream boundary condition at x = x is specified so that the
e

streamwise variation of the flow is zero.

_2¢ = 0 (3 11)
_X 2 X=X

e
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The boundary condition at the inner boundary surface, D-A in Figure

6, is the key to the viscous-inviscid interaction. Inviscid flows

should be computed over an equivalent body, i.e., effective displacement

surface due to the viscous effects rather than the actual body surface.

This, however, requires repeated generation of the grid because the

displacement thickness changes during the interaction process. In order

to avoid this computational effort, the coupling procedure is

implemented by using a transpiration boundary condition following the

incompressible analysis of Lighthill (1958) who suggested that the

effect of boundary layer displacement upon the inviscid outer flow could

be represented by a distribution of equivalent sources on the physical

body surface with strengths given by the streamwise growth of the

displacement thickness. This concept has been extended to axisymmetric

compressible flow (Gersten, 1974; Lock, 1981) as

1 d ","
u r 6 ) (3.12)v - ds(Oe e o

o Pero

where v is the transpiration velocity normal to the body surface, s iso

the coordinate tangential to the body surface, r is the radius of the
o

body, and 6 is the displacement thickness. In Section II. C, the

advantages of using the shear-layer coordinate were explained. When the

inviscid flow is solved over the shear-layer coordinate rather than the

physical body surface, the displacement thickness in Equation (3.12)

should be reduced by the distance between the shear-layer coordinate and

the actual body surface (noted as t in Figure 3). As a result, Equation

(3.12) becomes
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where

i d I dm

v - ds (m - mt) - ds (3.13)
o Pero Pero

m = PeUero 6 (3.14)

mt = PeUero t (3.15)

3. Nondimens iona iizat ion

It is convenient to use a dimensionless form of the variables in

solving Equation (3.8). The density and velocity components are

nondimensionalized by the stagnation density, Po' and by the critical

speed of sound, a , respectively. Independent variables are normalized

by the total length between the inflow and outflow boundary points in

the x coordinate, L = x - x .
e e o

u -- v

Po a a

x-x ¢ L

x = o -- r -- e
L r = _- ¢ = _ (3.16)
e e a

m *
-- m -- _ t --* m
m - 2 m t 2 m - 2

Poa'L Poa'L Poa'Le e e

where x and x are the inflow and outflow boundary position as shown in
o e

Figure 6.

With the use of the above dimensionless variables, Equation (3.8)

can be rewritten as
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(p¢_r)_ + (_¢F)T 0 (3.17)

where, using Equations (3.3)-(3.6), the dimensionless density, p, can be

expressed as

1/(_[-1)
-- _-i--- 2 2
p = [1 - aTzY--I7(¢_+ z"_--")] (3.18)

The corresponding boundary conditions, given by Equations

(3.9)-(3.13), can be rewritten in terms of the dimensionless variables

as

$(0,_) = 0 (3.19)

¢(_,L) = _,_ (3.20)

a_21_=1 0 (3.21)

1 dm
v - ---- d_ (3.22)
o Pero

Hereafter, bars denoting the inviscid nondimensiona]ization will be

dropped, and all variables are the nondimensional ones unless otherwise

specified.

4. Coordinate transformation

The computational domain often becomes irregular in the physical

coordinates due to the arbitrary shape of the body configuration. The

irregular grid caused by the arbitrariness of the boundaries may

increase the truncation error of difference schemes and sometimes

greatly affect the stability of the solution procedure. It also takes
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considerable effort to implement the boundary conditions on the

irregular boundaries. The governing equations are, therefore, usually

transformed to a suitable computational domain from the physical

coordinates before the solution procedure is applied. Using an

independent variable transformation, any arbitrary geometrical surface

in the problem can be transformed to a constant coordinate line in the

computational set so that the boundary conditions can be implemented

with much less effort.

A general independent variable transformation is given as

= $(x,r) I] = l](x,r) (3.23)

where x and r represent the physical coordinates and $ and _ represent

the computational coordinates (see Figure 7). $ = 0 and $ = Smax

correspond to the points x = 0 and x = i, respectively. Likewise, _ = 0

and nma x correspond to r = ro and r = re, respectively.

Applying this general transformation and maintaining the strong

conservative form (Viviand, 1974)_ Equations (3.17) and (3.18) are

transformed into the computational domain as

_. + pVr.
( J )6 ( J )n = 0

(3.24)

where U and V are the contravariant velocity components normal to

constant $ and _ lines, respectively, and are expressed as

i/(_-i)

_-i . + v¢ _],,p = [i _:T_(u¢_ (3.25)
Ol-I _
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FIGURE 7. Inviscid computational domain in transformed coordinates
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U = Ale $ + A2¢ _

V = A2¢ $ + A3¢ B

The metric quantities of the transformation are given as

A I = Sx 2 + Sr 2

A 2 = Sx_x + Srnr

2 2

A3 = Bx + Br

J = Sx_r - Sr_x

where J is the Jacobian of the transformation.

can be computed as

J = (xsr - x r_)

-i

=Jr $ =- Jx

= =Jx_qx - J r$ _r

(3.26-a)

(3.26-b)

(3.27)

These metric quantities

(3.28)

B. Relaxation Methods

It is essential to know the mathematical classification of a

governing partial differential equation in order to develop the correct

solution procedure. Classification is easier when the potential

equation is written in the nonconservative form as



119

v 2 i
u 2 2uv + (i a-2)#rr + - _r 0(1 - _)_xx - -_ #xr r =

where a is the local speed of sound. Following the standard

classification (Anderson et al., 1984) procedure for second order

partial differential equations, it is found that the classification

depends upon the signs of the coefficients. This leads to the

conclusion that the velocity potential equation becomes

2 a 2hyperbolic where q > (supersonic)

2 2
parabolic where q = a (sonic)

2 a 2elliptic where q < (subsonic)

(3.29)

2 _x 2 2where q = + _r

Transonic flows, of course, usually include all three of these flow

categories. Flow disturbances move very quickly downstream because the

propagation velocity is (u + a) and very slowly upstream because the

propagation velocity is (u - a). For a disturbance in a downstream

region to propagate upstream, it must pass around the supersonic zone.

As a result, it is difficult to develop an efficient algorithm for

transonic flows. Most of numerical methods for the velocity potential

equation have been based on relaxation schemes suitable for an elliptic

equation and adjusted for embedded hyperbolic regions because the

supersonic region is usually relatively small in transonic flows where

the velocity potential equation can be used.

It should also be noted that the velocity potential equation is

nonlinear in nature. This makes it almost impossible to use a
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noniterative, direct solution procedure because linearization of the

velocity potential equation will destroy the mechanismof shock

capturing. Therefore, most of the numerical solution procedures for

transonic flow use an iterative relaxation method with linearization.

Relaxation methods are generally classified as either point

iterative or block iterative. The point iterative schemeis the

simplest and the Jacobi and Gauss-Seidel schemesare included in this

category. These methods are very simple, but are often relatively slow

in convergence, especially as the number of grid points increases.

Therefore, they are seldom used in the finite-difference analysis of

transonic flows.

In block iterative methods, the unknownvariables at a numberof

grid points are grouped together and solved simultaneously. This is

repeated iteratively. The line-Jacobi, line-Gauss-Seidel, successive

line overrelaxation (SLOR)and alternating direction implicit (ADI)

methods are included in this category. These methods often provide

faster convergence than point iterative methods.

Iterative procedures can be accelerated by using a successive

overrelaxation (SOR)procedure in which the values obtained from the

standard form of any algorithm are arbitrarily modified according to the

following format

cn+l cn + _ (3.30)= (¢n+l_¢n)

where _ is the relaxation parameter. Here, n denotes iteration level

and cn+l is the most recent value of ¢ calculated from the standard
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iteration algorithm, _n is the value from the previous iteration as

adjusted by the previous application of this formula, and _n+l is the

adjusted (relaxed) value of _ at n+l iteration level. For the iterative

procedure to converge, w must be restricted to values between 0 to 2.

When w ranges between 1.0 and 2.0, the procedure is called

overrelaxation. In some cases, underrelaxation is applied with w

ranging from 0 to 1.0.

It is known that the rate of convergence is usually sensitive to

the choice of w and use of the optimum value of w reduces the

computation time greatly. For a simple Laplace equation with simple

boundary conditions, it is possible to determine the optimum w, w
opt'

based on the number of mesh points (Young, 1954). For complex nonlinear

elliptic equations, it is, however, very difficult to determine the w
opt

in advance (Forsythe and Wasow, 1960; Ames, 1977). In such cases,

trial-and-error numerical experimentation is often used to determine the

value of w close to w
opt"

The SLOR algorithm is one of the simplest block iterative

procedures. Over the years, SLOR algorithms have proved to be reliable

and flexible and they are still used in many numerical solution schemes

for the potential equation (Jameson et al., 1976; Hafez et al., 1979;

Chen and Caughey, 1980; Green and South, 1983). The SLOR procedure was

used for part of the calculations in the present study and will be

described in more detail below.

An alternating direction implicit (ADI) method (Peaceman and

Rachford, 1955) often provides faster convergence than the SLOR scheme.
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In the ADI method, a partial differential operator is split into a

sequence of an implicit operators in alternating directions, so that the

complete iteration cycle consists of consecutive sweeps over all rows

and columns. Since each iteration cycle consists of multiple sweeps in

different directions, each grid point in the entire mesh can be

influenced by every other grid point during each iteration; thus, faster

convergence is possible. The ADI method was used in the present study

to generate the computational grid and will be described later. The

efficiency of the ADI method is usually dependent on flow

characteristics and mesh sizes. However, numerous computational results

indicate that the ADI method can be as much as 5 ~ i0 times faster than

the SLOR method for some problems.

The splitting of the partial differential operator into a sequence

of one-dimensional steps as done in traditional ADI methods can also be

formulated through an approach known as "approximate factorization".

The terminology "approximate factorization (AF)" was used by Yanenko

(1971) and adopted by Ballhaus and Steger (1975). In the AF procedure,

the implicit differential operator is approximated as a product of

factors for multi-dimensional cases. If the original differential

operator is nonlinear, it should be linearized before factorization.

Each factor usually requires an implicit operator in only one direction;

thus, it involves only a simple banded matrix. Then the errors caused

by linearization and factorization are corrected in the solution

automatically by iterations. Some formulations of ADI schemes are often

referred to as AFI schemes.
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A new AF scheme, AF2, was proposed by Ballhaus and Steger (1975) in

the study of the unsteady low frequency transonic equation in order to

obtain faster convergence than permitted by the ADI scheme. This

implicit AF scheme was then applied to the steady TSD equation by

Ballhaus et al. (1978) and to the velocity potential equation by Hafez

et al. (1979) and Holst and Ballhaus (1979). Since the AF2 scheme is

believed to be insensitive to the moving shock instability (Hoist,

1983), this scheme is very effective for solving steady transonic flows,

especially supercritical cases. In the subcritical case, which does not

have supersonic regions, the ADI algorithm generally produces faster

convergence than the AF2 scheme (Hoist and Ballhaus, 1979).

In the present study, both the SLOR and AF2 schemes were employed

for the analysis of inviscid transonic flows. For the semi-inverse

interaction method which employs a very simple interaction law, the AF2

scheme was used mainly because of its high convergence speed. In the

case of the simultaneous interaction method, the SLOR is preferred to

the AF2 scheme since the simpler algebraic formulation of the SLOR

reduces the human effort considerably in-manipulating the simultaneous

interaction laws.

C. Num .... al Grid Generation

i. Governing equations

One of the easiest ways of establishing body-fitted coordinates is

an analytic method which uses algebraic expressions to stretch or shear

the coordinates. This simple procedure is useful for simple geometries
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but is difficult to implement for complex geometries. For complex

geometries, one of the most popular and highly developed techniques for

grid generation establishes a new set of curvilinear coordinates from

?

the numerical solution of appropriately controlled partial differ_tial

equations with suitable boundary conditions.

Even though there have been a lot of different numerical grid

generation schemes proposed (see Thompson et al., 1982), the most

popular one has been the elliptic grid generation scheme based on the

Poisson or Laplace equation developed by Thompson et al. (1974, 1977).

Some of the schemes proposed more recently are based on hyperbolic

equations (Steger and Sorenson, 1980) or parabolic equations (Nakamura,

1982). These have the advantage that the solution can be obtained by

simple marching from the initial plane without a time-consuming

iteration process. However, they lack a means to control the grid

distribution at the end of the marching plane and appear to need further

development before they can be used in complex geometries. For the

geometries of the present study, a scheme based on the solution of the

Laplace equation was adequate to give smooth and nearly orthogonal

meshes. Using a Poisson equation would have permitted additional

control of the mesh size and skewness but this appeared unnecessary for

the present study.

The Laplace equation used to define the coordinate transformation

is given by
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Sxx + Srr = 0 (3.31)

+ = 0 (3.32)nxx _rr

Equations (3.31) and (3.32) are transformed to the computational domain

by interchanging the roles of the independent and dependent variables as

A x$$ - 2B xsn + C x 0
(3.33)

A r$$ - 2B r$_ + C r = 0
(3.34)

where

2 2 2 2

A = x + r_ B = x_xl] + r_r C = x_ + r$ (3.35)

A Dirichlet type boundary condition is prescribed at all boundaries as

x = x($,_) r = r($,_) (3.36)

These boundary conditions are very important because they determine

the actual grid formulation. The streamwise grid spacing along the body

surface was chosen so that more grid points are concentrated where the

gradients of flow properties are expected to be large. A transformation

formula suggested by Roberts (1971) was used to produce the mesh

clustered at some interior point, xc, along the body surface. This

formula is listed in Appendix D. At the outer boundary, the uniform

grid spacing was used.

In the normal direction, grid points were concentrated near the

body surface. This was done using an exponential stretching type
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transformation which is also given in Appendix D. In order to start the

relaxation scheme, initial values are needed. Initial values of x and r

at interior points were provided by simple linear interpolation between

boundary values.

2. Solution procedure

The finite-difference mesh (x($,n), r($,_)) is formed as a solution

of Equations (3.33) and (3.34) subject to the boundary conditions given

by Equation (3.36). For the finite-difference solution of this elliptic

equation, a second-order-accurate central differencing scheme was used.

Using operator notation, the finite-difference representation used for

Equations (3.33) and (3.34) is

L( )ij = [Aij6$ S 2Bij_$_ + Cij6Bn]( )''lj (3.37)

where the subscript i and j represent the finite-difference mesh

position and the finite-differencing operators are given by

_ I_[( )i+l - 2( ) + ( ) j]
6S$( )i,j A$2 ,j i,j i-l,

1

65_( )i,j -4ASA_ [( )i+l,j+l - ( )i-l,j+l

- ( )i+l,j-I + ( )i-l,j-i ] (3.38)

6 ( ) = _l_l [( )i j+l
_ i,j A2 ,

2( )i,j + ( )i,j-i ]

for the interior points. Near the boundaries, a one-sided differencing

scheme with second-order-accuracy was used. The spacing increments AS

and A_ are arbitrary and were set to unity for convenience.
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These finite-difference equations can be solved by any standard

relaxation procedure. Although the SLOR method is usually used in grid

generation, the ADI algorithm was used in the present study in order to

improve the convergence rate. For a relaxation problem governed by a

PDE in the form of L¢ = 0, it is convenient to use a two-level

correction scheme given by

NC n + _L¢ n = 0 (3.39)

where L is a complete differential operator, N is a linear operator

which determines the type of iteration method, Cn is the nth-iteration

correction term which is identified as Cn = cn+l _ cn, and the m is a

relaxation parameter. L¢n is the nth-iteration residual which indicates

the degree of accuracy of the nth-iteration solution, _n, to the finite-

difference equation and is denoted by Rn. Introducing an analogy where

the number of steps is proportional to an artificial time (pseudo-time)

coordinate t, C is considered as representing AtCt. Thus, N should be

chosen so that this process converges in time.

In the present study, the Peaceman-Rachford ADI scheme (1955) is

reformulated following Ballhaus et al. (1978). The N-operator is

approximated as the product of two tridiagonal matrix factors as

i
N = - - (a (a C6 (3.40)- Aa$$) _n)

where = is an acceleration parameter which is considered as the inverse

of a pseudo-time step, 1/At. With the introduction of intermediate

correction terms, f and g, Equations (3.33) and (3.34) become
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step 1

_tep2

(_ A n fn n
i,j655 ) i,j = =wLx. 1,j

n n

(= - A_ 655)g i = _Lr.l,j ,j 1,j

(3.41-a)

(3.41-b)

(= - C_ . n+l n fn
1,j6nn)(xi,j " xi,j) = 1,j

n+l n n
(= C_ .6 )(r.. - r..) = gi

1,j _ 1,j I,] ,j

In step i, the values of the f and g arrays are obtained by solving

two tridiagonal matrix equations for each _ = constant line. Then the

new values of x and y are calculated in the second step from the

solutions of two tridiagonal matrix equations for each $ = constant

line. These tridiagonal matrix equations can be solved easily by using

Thomas algorithm and the actual coefficients of the resulting matrix are

given in Appendix E. The stability analysis shows that the ADI method

is unconditionally stable as long as 0 ! _ ! 2 and _ > 0. In the

present calculations, convergence was obtained with a value of _ equal

to 2.

To achieve the fastest convergence rate, it is necessary to use a

optimum value of = which minimizes the amplification factor of the

error. Precise estimation of the optimum = is usually extremely

difficult. Following the suggestion of Ballhaus et al. (1978), a

sequence of _'s is repeated with a predetermined cycle. This sequence

is given by

(3.42-a)

(3.42-b)
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(K-l) / (_-1)

_K = _H(? ) (3.43)
H

where t is the number of elements in the sequence. The high end point

of the sequence, =H' is effective in minimizing the high-frequency

errors and is chosen between 0.01 and 0.05. The lower end point of the

sequence, _L is effective in reducing the low-frequency errors and

recommended values are between 0 and 0.01. The values of these

iteration parameters influence the rate of convergence and they are

usually optimized by numerical experimentation. The typical values of

_H and _L used in this study are 0.02 and 0.00001, respectively, and the

value of £ is 8.

The converged solution is usually obtained for a 100 × 40 grid in

-3
50 iterations using a convergence criterion c = 1 × 10 , where a is

C C

defined as

IRmax___nn ]
E >
c - I 11

Rmax

k
where Rmax

iteration level.

shown in Figure 8.

(3.44)

is the maximum residual for both x and y at the kth-

A typical example of numerically generated meshes is

D. Algorithms for the Velocity Potential Equation

When the flow is subsonic, the velocity potential equation is

elliptic. Hence a standard relaxation scheme can be applied after the

equation is discretized with second-order-accurate central differencing
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approximations. The von Neumannstability analysis by Holst (1983)

shows that the central differencing schemeis stable for subsonic

regions but unstable for supersonic regions. Therefore, modifications

are necessary in order to provide a stable solution in supersonic

regions.

To deal with this problem, Murman and Cole (1971) introduced a

type-dependent, finite-difference relaxation scheme for the transonic

small disturbance equation. This scheme has been extended by many

others (Steger and Lomax, 1972; Garabedian and Korn, 1972; Jameson,

1974) to solve transonic flows using a variety of formulations. In the

type-dependent differencing scheme, a local flow type at each grid point

is first determined by centrally differencing the velocity potential.

If the local flow type is subsonic, standard second-order-accurate

central differencing formulas are used. For supersonic regions which

are hyperbolic, first-order-accurate upwind differencing formulas are

applied. Hence, the physical domain of dependence is correctly

represented by the computational domain of dependence.

For example, assuming that the main flow direction is aligned with

the x direction, the expression for the upwind finite-difference

representation of the second derivatives at a supersonic point (i,j)

becomes

_ 1 - 2¢i_ + j) (3 45-a)
Cxx A_(¢i,j l,j ¢i-2,

1

Cxr - 2AxAr(¢i,j+l - ¢i,j-i + ¢i-l,j+l + ¢i-l,j-i ) (3.45-b)
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I + #i -i ) (3 45-c)
_rr = _r2(_i,j+l - 2_i,j ,j

Using a Taylor series expansion, it can be shown that an upwind

differencing evaluation of the second derivative is first-order-accurate

and the leading terms in the truncation error can be regarded as an

artificial viscosity which is given by

Ax(u 2 a 2
- )_xxx (3.46)

2 2
With this artificial viscosity which remains positive when u > a ,

supersonic marching becomes stable. However, when the x-component of

the velocity is subsonic (u 2 < a 2) even though the flow is supersonic

(q2 > a2), the marching scheme might become unstable because the

artificial viscosity becomes negative. This instability occurs when the

flow is slightly misaligned with the x-axis so that the proper physical

domain of dependence is not included in the computational domain of

dependence.

The rotated differencing scheme was then introduced by Jameson

(1974) to overcome this directional difficulty. The basic idea is to

represent the potential equation in a local stream and stream-normal

coordinate system. Then type-dependent differencing is used along the

local streamline coordinate while the standard central differencing is

used along stream-normal coordinate. This produces artificial viscosity

which is always positive where the flow is supersonic, thus eliminating

the marching instability problem. However, the rotated differencing

scheme has several disadvantages, zoo. Because it must be swept in the
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local stream direction, difficulties might arise with general

curvilinear meshes. Also, this scheme becomes first-order-accurate in

both directions.

The above methods will be referred to as artificial viscosity

schemes since the difference molecule is adjusted in supersonic regions

to provide the proper zone of dependence. Associated with this

modification is a viscosity-like term in the truncation error. The same

effect can be achieved by the artificial compressibility (or density)

scheme. This idea has been independently developed in several different

forms (Eberle, 1978; Harten, 1978; Hafez et al., 1979; Holst and

Ballhaus, 1979). In the artificial compressibility scheme, an upwind

evaluation of the density is used in supersonic regions to provide the

upwind bias which is equivalent to what is accomplished by the

artificial viscosity.

In order to illustrate the idea of the artificial compressibility

scheme which is used in the present study and to compare it with the

artificial viscosity scheme, it is helpful to use a conservative form of

the velocity potential equation in one-dimension,

(p#x) x = 0 (3.47)

With second-order-accurate finite differencing formulas, Equation (3.47)

is approximated as

= 6 (0..,6 ¢.] (_ aa_
(PCx)x x ztt x z ...... -

4-- -_

where 6 and 6 are the backward and forward difference operators for
X X
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the first derivative, respectively. This form is satisfactory for

subsonic flow regions.

As mentioned before, for the type-dependent differencing scheme,

the difference operator is switched to upwind differencing in the

supersonic flow region. Following Jameson (1975), this is analogous to

the explicit addition of an artificial viscosity to the central

differencing. The artificial viscosity is given by

where

-Ax(_¢xx) x (3.49)

_X 2

= >_IN [0, 0(1 - _-)] (3.50)

Jameson also has shown that Equation (3.49) is equivalent to a term with

the form of

-Ax(vPxCx) x (3.51)

where

a 2

v = MAX [0, (i $_x2)] (3.52)

When Equation (3.51) is added, Equation (3.47) can be written as

= 6 _ - Pi ½)6x¢i](e_x)x x(Pi+½6x¢i) - 6x[_i(Pi+½
(3.53)

In subsonic regions, this scheme is second-order-accurate and centrally

differenced. For supersonic regions, it becomes a combination of
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second-order-accurate central differencing and first-order-accurate

upwind differencing due to the addition of the artificial viscosity.

In the artificial compressibility approach, the difference

expression given by Equation (3.53) has been rearranged by Holst and

Ballhaus (1979) to give

(pCx)x = 6x(_i+½6x_i)

where

(3.54)

_i+½ = (1 - _i)Pi+½ + _iPi-½ (3.55)

Comparison of Equations (3.53) and (3.54) shows that the explicit

addition of the artificial viscosity is equivalent to using a retarded

density. The differencing becomes more strongly retarded in the upwind

direction as the flow becomes more supersonic. If the above scheme is

applied in both directions for two-dimensional flows, it provides the

upwind biasing for the streamwise term in supersonic regions, thus

giving nearly the same effect as obtained by the rotated difference

scheme.

One difficulty in using the artificial compressibility scheme is

the choice of a switching function, 9, because v affects significantly

the accuracy and stability of the solution, especially, the strength of

shock waves as supersonic regions become larger. When 9 is not properly

chosen (see Equation (3.45)), a large pre-shock oscillation can be

observed (Holst and Ballhaus, 1979), which often results in a numerical

instability. This can be avoided by modifying the way in which 9 and p
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are computed(Hoist, 1983). The details will be given in a following

section.

E. Numerical Method

In the present section a finite-difference representation of the

velocity potential equation and its solution procedure are presented.

i. Finite-difference representation

a. Governing equations After applying second-order-accurate

finite-difference approximations, Equation (3.24) is written as

6_(_J_)i+½,j + _n(-VJP_)i,j+½ = 0 (3.56)

where the contravariant velocity components are computed using second-

order-accurate finite difference formulas given by

(_)i+½,j

A 1

= (_-)i+½,j6$_i,j

I(A2. I A2
+ _ J-)i+l,jS_i+l,j + _(]--)i,jSB_i,j

I'A2 55_i(_)i,j+½ = 2_J-)i,j ,j

I A2

+ _(]-)i,j+lS$_i,j+l

(3.57-a)

The values of the Jaeobian, J, and the transformation metric quantities,

AI, A 2 and A3, are first evaluated at integer mesh nodes (i,j) using

A 3

.+15 ¢: (3 57-b)+ (Y-)i,j _ n 1,j
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fourth-order-accurate central finite-difference formulas. Then the

values of the metric quantities at half integer points are obtained by

fourth-order-accurate interpolations.

Using the artificial compressibility scheme mentioned in the

previous section, this formulation becomes valid for supersonic regions

as well as subsonic regions. Instead of. direct addition of the

artificial retarded density given by Equation (3.51) which makes the

analysis difficult due to the general _-n coordinate system, an

approximate implementation is achieved by using the following form

- A_(vp_i_j)_ (3.58)

where 9 is still the same switching function (Holst, 1979). To simulate

the full effect of the rotated differencing scheme, the same form of the

artificial retarded density was added in the n direction (Holst and

Albert, 1979)

- All(vprl-_jV )_ (3.59)

Then the retarded density coefficients are expressed as

Fi+½,j = (i - 9i+k,j)Pi+½,j + Vi+k,jPi+2k_½,j

Pi,j+½ = (1 - vi,j+£)Pi,j+½ + v.i,j+£Pi,j+2£-½

(3.60-a)

(3.60-b)

where
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0 when U I > 0k = i+2,j
i when U I < 0

i+2,j

= 10 when Vi,j+ ½ > 0

1 when Vi,j+. _ < 0

(3.61)

The density given in Equation (3.24) can be rewritten as

-(_-1)
[-i

p = (i _Q) (3.62)

2 2

where Q = AI_ $ + 2A2_$_ _ + A3¢ q
In the TAIR code written by

Dougherty et al. (1981), the density values are computed using a

binomial series expansion of Equation (3.62). When the first four terms

are retained, the density becomes

p = 1 + ClQ + C2Q2 + C3Q3 (3.63)

where

_ 1 C2 _ 2-[ C3 = _ (2-[)(3-2[)
CI [+i 2([+i)2 6([+i) 3 (3.64)

where [ is the ratio of specific heats.

According to Dougherty et al. (1981), this approximation is very

accurate and saves significant computation time compared to the

exponentiation operation. Values of the density are calculated and

stored at the centers of the mesh cell, (i+½,j+½), based on the

suggestion of South and Jameson (see Holst, 1983) who found that the

pre-shock oscillation can be reduced in this way. The values needed at

(i+½,j) and (i,j+½) are obtained by simple arithmetic averaging.
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The magnitude of the artificial viscosity, i.e., switching function

9, is very important for the accuracy and the stability of the solution.

Since the expression given by Equation (3.52) proved to be inadequate

for flows with large supersonic regions, a formulation suggested by

Holst (1979) was used in the present study:

2
9i,j = MAX[0, (Mi,3 l)Cv] (3.65)

where M. is the local Math numberand C is a constant. With this
z,j v

formulation, it is easier to select an appropriate value for v. C is

usually set between 1.0 and 2.0 and should be carefully determined by

trial-and-error depending on the strength of shock waves and relaxation

usually produce sharperschemesemployed. The smaller values of C

less-smeared shock profiles and should be used for weak shock wave

flows. The accuracy and stability of the solution seemmore sensitive

to the choice of C in the SLORmethodthan in the AF2 method. This isv

believed to be due to the effect of an added artificial time-dependent

dissipation term in the AF2 scheme. The typical value of C for a

stable solution is 0.8 for the SLORmethodand 1.2 for the AF2 scheme.

Values of v are actually computedat the centers of the meshcell

(i+½,j+½), like the density, and simple arithmetic averaging is used to

obtain the value at (i,j).

b. Boundary conditions The boundary conditions at the inflow

and outer boundaries become

¢(l,j) = 0 ¢(i,NJ) = ¢ (i,NJ) (3.66)
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where ¢ is the velocity potential of the undisturbed freestream and can

be calculated easily from Equation (3.20).

The exit boundary condition is approximated as

= =
(_)NI-½,j ( J )NI,j ( J )NI+½,j (3.67)

because the $ coordinate is assumed to be almost parallel to the x

coordinate in the vicinity of the exit plane. This approximation makes

it much simpler to implement the boundary condition without serious

error. The difference approximation for ¢$ at i = NI appearing in the

expression of (V/J)N I .+i can be obtained from the boundary condition,j _

instead of using a one-sided differencing.

becomes

_ (U A2

¢$}NI j+½ A1 _ii¢_), NI ,j+½

Consequent ly,

From Equation (3.26-a), ¢$

(3.68)

A 2

._Vr. A3 ! A2 U

J )NI j+½ = {pr[(j AI0)¢_ + AI]] }
' NI ,j+½

Using Equations (3.67) and (3.69), the L-operator is constructed

maintaining second-order-accuracy.

A simple mathematical operation based on the coordinate

transformation and the definition of the contravariant velocity shows

that the transpiration velocity boundary condition at the solid surface,

given by Equation (3.22), can be expressed as

V = _So 5
j=l

(3.69)

(3.70)
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Combining Equations (3.22) and (3.70) gives

dmI( )i'l = d-S- i

This boundary condition is implemented through the control volume

approach by assuming

(3.71)

pVr
( J )i,1+½+ (p_jr)i, i-3 = 2 (Vj_)i, 1 (3.72)

Therefore,

( J )i,l-½ i
(3.73)

Also, the difference approximation for ¢_ at the wall appears in the

expression for (U/J)i+½,1. As for the exit boundary, Equation (3.26-b)

is used to give

(V A2
= " -- (3.74)

¢_[i+½,1 A3 A3¢_)i+½,1

Using this expression,

AA_ A2 "_
Al __ din'____" (3.75)

( )i+½,1 = [pr(_- )¢_ + A 3 d_']i+½,1

Equations (3.73) and (3.75) are then incorporated into Equation (3.53)

to construct the L-operator using second-order-accurate central

differencing formulas just as for interior points.

As discussed before, the distribution of the mass flux, m , is

assumed to be unknown in the simultaneous interaction method.

Therefore, m must be treated as an unknown variable in developing the
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general procedure for the velocity potential equation. This was

difficult to achieve with the two step AF2 algorithm so only the SLOR

,
scheme was utilized for the simultaneous interaction method and m was

assumed to be known before each iteration for the AF2 scheme.

2. Method of solution

In this section, the relaxation procedures used in solving a

finite-difference form of the velocity potential equation given by

Equation (3.56) is presented. The present analysis employs two

different relaxation algorithms: the SLOR and AF2 schemes.

Just as in the numerical grid generation scheme, a two-level

correction in pseudo-time given by Equation (3.39) was used. With this

approach, the discrete linear operator N should be chosen so that this

iterative relaxation process converges in pseudo-time. This often

requires the addition of time-dependent terms to embed the steady-state

equation in a convergent time-dependent process. With the definition of

Cn and Equation (3.30), the provisional value can be written as

_n+l = IC n + _n (3.76)
w

By using this expression, overrelaxation can be implemented as a part of

the solution algorithm, not as a separate step.

a. SLOR method The standard successive line overrelaxation

_SLOR) procedure was applied to Equation (3.56). Even though the SLOR

method is often much slower than the AF2 scheme, it is used for the

simultaneous viscous-inviscid interaction method because of its

simplicity. The simultaneous interaction method requires a relation
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between the velocity potential and the mass flux. With the SLOR scheme

it is simple to derive such a relation because the calculation procedure

consists of only a single sweep in each iteration. When Equation (3.57)

is incorporated into Equation (3.56), the resulting difference molecule

is composed of nine points as shown in Figure 9. Since the sweep

direction for the present SLOR scheme is aligned with the main stream

(6) direction, ¢'s at the downstream column, i+l, are all evaluated at

the nth-iteration level, and ¢'s at the ith column are all treated as

unknown quantities at the (n+l)th-iteration level. The ¢'s at the

upstream column, i-l, are all treated as known quantities at the

(n+l)th-iteration level.

Using Equations (3.39) and (3.76), the resulting N is expressed as

NC_ = [_ (Ri + + _Ri_iE _I _ _ C_1,j Ri-l) + 6 Rj6 ] 1,j (3.77)

+ [Cross Product Terms]

The cross product terms are due to the skewness of the mesh cell and are

represented as

I A2 +- ~

{2 (J-)i, j6_ (Pr)i+½, j6_

where

-I[ A2
- _E$ (_-)i,j(_r)i+½,j6 ]

-l[_(pr) 1 + -+I''A2" C_._E$ i,j+½ ( _ )t]--)i,j] } 1,j

_Alr

Ri = (_)i+½,j

(3.78)

PA3r
R =
j (--]-)i,j+½ (3.79)



144

0+ i--<_

J--_)

f

v

L
v

, ()

r)

)

i -I I i+1

SLOR

j+1 I ,,,i

j __..q _,:#

j_l__ _

i -1

AF2

,)_w

)

,)_w

I+1

ODIFFERENCING MOLECULE FOR L OPERATOR

X DIFFERENCING MOLECULE FOR N OPERATOR

FIGURE 9. Differencing molecule for operators



145

_i

and E$ and E+IN are defined as

E+I
) ( ) (3.80)E 1 ( )i,j = ( )i-l,j _ ( i,j = i,j+l

Although the correct zone of dependence is reflected on the

computational domain through the artificial compressibility scheme,

stability problems have been experienced near the sonic lines (where M

is close to one) when the potential equation is solved (Jameson, 1974).

This difficulty can usually be avoided by adding the time-dependent

dissipation-like terms to numerical schemes (Holst, 1983). The first

three terms in Equation (3.77) act like a time-dependent dissipation

term (_t) in the pseudo-time analysis so that the SLOR scheme is

usually stable for most of the transonic regime without an additional

dissipation term. However, the SLOR scheme begins to show signs of a

numerical instability as Mach number increases in supercritical cases.

This instability problem at high Mach numbers might be avoided by adding

additional time-dissipation terms (Jameson, 1974). At the present time,

however, such an additional time-dependent dissipation term was not

necessary when the velocity potential equation was solved coupled with

the boundary-layer equations.

The most important single factor determining the rate of

convergence of the SLOR solution is the relaxation parameter, w. The

optimum value of _ is usually very close to 2, but decreases slightly as

the Mach number increases. The typical value of _ is between 1.90 and

1.95 for moderate shock wave flows. Because of stability requirements,

was always set to unity in supersonic regions.
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A complete _ direction operator is included in N so that this

scheme is implicit in the _ direction. On the other hand, N involves

only the lower diagonal part of the $ direction operator, so this scheme

is explicit in the $ direction. This implies that each grid point is

influenced by only a single grid point to the right in the $ direction

during one sweep so that the rate of convergence is relatively slower

than the ADI or AF schemes. This set of N results in a tridiagonal

matrix equation for each $ = constant line. The resulting expression

for the tridiagonal system written for the unknown quantities at the

ith-column becomes

Cn + D C n + A C n
Bj i,j-i j i,j j i,j+l = E.• " j (3.81)

The coefficients of Equation (3.81), Aj, Bj, D.j and E.j are functions of

the already known C's at the adjacent columns, ¢'s from the previous

iteration level, and the density. These coefficients are given in

Appendix F. Note that only E 1 includes dm /d$ explicitly.

Equation (3.81) can be solved easily by eliminating either the

upper or lower diagonal terms from the tridiagonal matrix using a

standard Thomas algorithm. Elimination of the upper diagonal terms in

the coefficient matrix results in the following bidiagonal recurrence

relationships:

C n

i,l = Pl (3.82-a)

C_ n (3 82-b)
i,j = Pj + qjCi,j-i
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The coefficients, pj and qj, are also listed in Appendix F and are

calculated recursively from j = NJ to j = i. After elimination of the

e,

upper diagonal terms, only Pl includes dm /d$ explicitly. A closer look

n *
at Pl reveals the relation between Ci, 1 and dm /d_ as

C_ + dm (dm . dm
1,1 = PI0 Pll(d--_-)i-½ + PI2 d_--)i + Pl3(d-_-)i+½ (3.83)

If the distribution of m is known, then all C_ . at the ith column can
l,J

be calculated using recurrence relationships, Equations (3.82)-(3.83).

The SLOR solution procedure then proceeds to the next (i+l) column

and consequently completes one streamwise sweep column by column. This

process is repeated through multiple sweeps until convergence has been

achieved. The evaluation of convergence is based on the degree of

accuracy of the residual as given by Equation (3.44). The convergence

-3
criterion, g was typically set equal to I x i0 A typical inviscid

C'

flow calculation for a supercritical transonic case requires about

300 ~ 500 iterations. The solution procedure of the simultaneous

interaction which treats both C_ and dm /d$ as unknown variables will
i,i

be explained in Chapter IV.

b. AF2 method In the approximate factorization scheme for a

two-dimensional flow, the N-operator is usually approximated as a

product of two factors as

N = NIN o -" L (3.84)

The factors N 1 and N 2 are chosen so that their product is a close
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approximation to L and each factor requires only simple matrix

operations and the overall scheme is stable. Several versions of the

AF2 scheme, which differ only slightly, (Ballhaus and Steger, 1975;

Ballhaus et al., 1978; Holst and Ballhaus, 1979; Flores et al., 1984)

have been suggested. The present approximate factorization scheme is

based on the AF2 scheme which was developed by Holst (1979) and used in

TAIR computer code.

In the present study, the N-operator is factored as

NC n. + 6 R )(- c_5 :[ *_ ) Cn
1,j a _ j _ 1,j (3.85)

where R. and R. are given by Equation (3.79). A free parameter _ is
l ]

interpreted as the inverse of an artificial time-step, i/At, as in the

ADI method given in Equation (3.40). This AF2 scheme can be implemented

in a two-step format as

step__l

_- n n
(_ + 6 R.)f. . = =_L¢.

j i,] 1,j
(3.86)

step 2

-+ _ *- Ri _ C n fn(- _ T ix),6 - 6 ) = (3.87)
$ $ $ 1,j 1,j

where fn
1,j is an intermediate result between alternative sweeps. The

main difference between the present and Holst's scheme is that a regular

right-hand coordinate system is used in the present analysis while Holst

used a left-hand coordinate system. Therefore, some of signs in N 1 and

N 2 in Holst's algorithm are different than those in the present
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analysis.

In step I, Equation (3.86) results in a set of simple bidiagonal

matrix equations for the f array along the _ direction. The second step

consists of a set of tridiagonal matrix equations for the correction

array, C, along the _ direction. The resulting sets of matrix equations

become

stepl

step2

fn + d fn
bj 1,j-i j 1,j

(3.88)e,

J

B.C2 + D.C_ + AiCn+l,i = Ei 1-l,j i 1,j j i

The coefficients in these equations are given in Appendix G. Equation

(3.88) can be solved easily by back-substitution if the boundary

condition of f at j = I is known. The coefficients in Equation (3.89)

form the familiar tridiagonal matrix that can be solved by the Thomas

algorithm after all fn's are obtained.

The most distinctive feature of the present AF2 scheme is that the

difference approximation in the _ direction is split between two steps.

This provides a ¢_t-type term which is thought to be helpful for the

convergence process of the iteration scheme as the time-dependent

dissipation term. This also places a restriction on a sweep direction

in both steps. The sweep direction should be in the positive

direction, i.e., from j = I to j = NJ, for the first step and in the

negative n direction, i.e., from j = NJ to j = I, for the second step.

(3.89)
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No restriction is imposed on sweep direction due to the flow direction

in either of the two steps.

In order to avoid the instability problem occurring near sonic

lines, a _$t term can be added explicitly, if necessary, in the

appropriate factor insuring upwind differencing. In the present study,

the _$t-type term is included by adding ± _X65 in the second step to

provide time-dependent dissipation in the $ direction. The difference

direction of this term is always upwind with the flow direction as

indicated by the double arrow notation and the sign is chosen so as to

increase the size of the diagonal term of the matrix in Equation (3.89)

ensuring diagonal dominance. This additional dissipation term only

influenced stability and did not affect the values of the solution.

The magnitude of the _$t term is controlled by a parameter _ using

special logic suggested by Dougherty et al. (1981). The value of _ is

fixed at 0.3 in subsonic regions. In supersonic regions, X is first

initialized depending on the shock strength. Generally, the initial

value of _ is small (~ 1.0) for small supersonic regions, moderate

(3.0 ~ 4.0) for moderate supersonic regions, large (_ 4.5) for large

supersonic regions. Then _ is updated appropriately by monitoring the

phase of solution convergence based on the average and maximum residual,

i.e., if the solution is converging satisfactorily, _ is decreased; if

not, _ is increased. In addition to this logic, % is adjusted depending

on how much time-dependent dissipation is required for the solution.

This method developed by Dougherty et al. (1981) monitors the growth

rate of the number of supersonic points, and if they grow fast, then



151

is increased; if they grow slowly, then _ is decreased.

The standard yon Neumann stability analysis applied to a linearly

simplified AF2 scheme (Holst, 1983) shows that this fully implicit

iteration scheme is generally unconditionally stable as long as

0 _ _ _ 2 and _ _ 0. Treating the iteration level as pseudo-time, which

can be done by considering _ as 1/At, naturally suggests that fast

convergence can be obtained with a small value of _, i.e., large time

step. This is, however, effective for reducing only the low-frequency

errors but not the high-frequency errors (Ballhaus et al., 1978). As

was done in the ADI method used for grid generation, _ is cycled over a

sequence of values, given by Equation (3.43). Identifying the correct

values for the high and low limits of _, i.e., _H and =L' is not easy

and is again based on trial-and-error numerical experimentation.

Suggested values for =H and _L are 1.5 and 0.07, respectively, and the

value of £ is 8.

Implementation of the boundary conditions outlined in the previous

section can be done without altering the form of factors N] and N 2 even

at the wall. However, a few details need attention. First, the

boundary condition on f at j = I is required at the beginning of the

first sweep. Since the intermediate variable f has little physical

meaning related to #, it is not obvious how to provide a meaningful

boundary value for f. Constructing the N-operator from the L-operator

at the wall based on its boundary condition suggests that f = 0 seems

to be a good approximation. This choice of boundary condition on f is

also consistent with the fact that the value of f approaches zero as the
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iteration process drives the solution to a steady state.

Associated with the solid surface boundary condition, there is an

additional stability condition for the present AF2 scheme. The

parameter _ has to be restricted to some minimum value in the region

close to the solid surface when the aforementioned wall boundary

condition is used (Hoist, 1983). Usually the value of = is multiplied

by a factor of I0 in the vicinity of the wall surface. At the exit

boundary, the second derivative term in the $ direction in the second

_ n

step, (6$Ri6$)Ci,j, is assumed to be zero according to the boundary

condition.

* C n _n+lWhen the distribution of m is known, and are determined

after two sweeps of Equations (3.88) and (3.89). This process is

repeated iteratively until convergence is achieved. The convergence

criterion is also evaluated by Equation (3.44) and the typical value of

E was I x 10 -2. The AF2 scheme seems to converge about i0 times faster
C

than the SLOR method for transonic problems. Hoist and Ballhaus (1979)

observed that even with the same level of _ , the AF2 scheme provides
C

the solution significantly closer to the finally converged solution than

the SLOR scheme. This is because the average residual drops more slowly

than the maximum residual in the SLOR scheme, while both maximum and

average residual decrease with nearly the same speed in the AF2 scheme.

Hoist and Ballhaus (1979) suggested that the reason for this

behavior is due to the fact that the AF2 scheme reduces all error

components efficiently whereas the SLOR scheme treats only the high-

frequency error components efficiently and the maximum residual is
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highly influenced by the high-frequency errors. They also suggested

that the root mean square error is a better criterion with which to

compare convergence performance between different relaxation algorithms.

Since the maximum residual is the convenient way to monitor convergence

of the solution, the AF2 algorithm can use a larger convergence

criterion than the SLOR scheme to provide approximately the same average

degree of accuracy in both converged solutions.
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IV. VISCOUS-INVISCIDINTERACTIONMETHOD

In the previous chapters, the solution procedures for the viscous

and inviscid flow equations were presented. Hence, the solutions for

each region can be obtained separately if the appropriate boundary

conditions are provided. This zonal approach reduces the effort of

solving the governing equations comparedto the effort needed to solve

the Navier-Strokes equations in the complete flow domain. However, in

an interaction analysis, the solution in one region is permitted to

influence the solution in another. In the present problem, this is

carried out through the displacement effect of the viscous flow. This

displacement effect causes a change in the boundary conditions for the

inviscid flow as proposed by Lighthill (1958) and discussed in Section

III. A. The zonal approach requires that the solutions from each zone

match in somemanner. This is usually implementedthrough the

requirement that the surface pressure distribution obtained from the two

solutions be identical. A coupling a]gorithm is needed to specify the

way in which the boundary conditions for the viscous and inviscid flow

will be altered from one iteration to the next in order to drive the

solutions toward the matched condition.

There have been several interaction schemesproposed and these can

be generally classified as direct, inverse, semi-inverse and

simultaneous (see Figure i0). In Chapter I, someof the previous

, 1. _ ....... 1___ J

seuuze_ emp±uyeu the interactioi_ me-_-=_,uuwere reviewed u____..u_±=_±xand were

summarized in Table i. If the interaction between the viscous and

inviscid flow is weak, i.e., the viscous effect upon the pressure field

f

. _,..- _,._. _.r,,._.CED,,IG PAGE BLANK NOT FILMED P_G_I_.TENTt0NALL_ BLANK
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FIGURE i0. Coupling algorithms for the interaction method
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is small, then the classical direct interaction method can be used. As

sketched in Figure 10-a, in the direct interaction method, the solution

is obtained in the viscous and inviscid regions sequentially in the

direct mode, i.e., the boundary-layer equations are solved with a

prescribed pressure field obtained from the inviscid solution to give

the distribution of the displacement thickness and the inviscid flow is

solved over the prescribed displacement thickness obtained from the

boundary-layer solution to provide the pressure field. This procedure

is repeated iteratively until both solutions converge. This method

usually requires underrelaxation and converges slowly. The main

shortcoming of the direct interaction method is, however, that the

solution of the boundary-layer equations in the direct mode leads to a

singularity at the point of separation as discussed earlier and

consequently destroys the interaction process.

This difficulty can be overcome by using the inverse interaction

method in which the role of the pressure and the displacement thickness

is reversed from the direct method. In the inverse interaction method,

the boundary-layer equations are solved with the prescribed displacement

thickness and the inviscid region is solved with the prescribed pressure

field (see Figure 10-b). However, it is difficult to develop an inverse

solution procedure for transonic inviscid flow. Also, it is necessary

to use a severe underrelaxation factor even for a simple case so that

the whole iterative procedure is very slow to converge (Carter and

Wornom, 1975).
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The semi-inverse interaction method proposed by Le Balleur (1978)

offered advantages over the inverse method. In the semi-inverse

interaction method, the boundary-layer equations are solved inversely

and the inviscid flow is solved in the direct mode. Therefore,

solutions including the pressure distribution in both regions can be

obtained with the sameprescribed displacement thickness. A coupling

algorithm (denoted as interaction law in Figure 10-c) is then devised to

update the displacement thickness in a mannerwhich will reduce the

difference between the pressure distributions from the two solutions at

the next iteration. The semi-inverse strategy is shownin Figure 10-c.

The sameidea was successfully used by Carter (1979) and Kwonand

Pletcher (1979) for incompressible interacting flows but their coupling

algorithm was different from the one used by Le Balleur (1978). This

methodwas also applied to transonic flow calculations by Whitfield et

al. (1981), Carter (1981) and VanDalsem and Steger (1983) and Melnik

et al. (1983).

However, the coupling algorithms used in the semi-inverse methods

to date have been rather arbitrary and lack a rigorous theoretical

background, although Carter (1979) gave a somewhatformal justification

for his coupling algorithm based on the von Karmanmomentumintegral

relation. Also, according to the yon Neumannstability analysis done by

Wigton and Holt (1981), the semi-inverse method becomesunstable for

supersonic separated flow due to the amplification of the high frequency

Fourier components in the solution. Such an instability has also been

experienced in the calculation of transonic flows with large separated



1_0
.LJJ

regions in the present study.

Since the viscous and inviscid flow regions are solved separately

at each global iteration in the above method, only a weak coupling of

the two regions is provided. For strongly interacting flows where the

viscous and inviscid flow regions are locally coupled, a localized

implicit treatment of coupling between the viscous and inviscid regions

seems to be preferable. This type of approach which seeks a

simultaneous solution of the the viscous and inviscid flow regions is

classified broadly as a simultaneous interaction method (see Figure

10-d). This approach is further divided into the quasi-simultaneous and

the (fully) simultaneous method depending on whether the simultaneous

solution procedure is used partially or not. In the quasi-simultaneous

method, the simultaneous solution procedure is used only in updating the

boundary conditions needed for coupling, and either the boundary-layer

or inviscid equations are solved separately. In the fully simultaneous

interaction method, the full description of the viscous and inviscid

flow regions are embedded together and are solved simultaneously instead

of using a separate simple local relation.

Most of the quasi-simultaneous and simultaneous methods developed

to date have used integral methods for either the viscous or inviscid

flow equations. At this time, the work of Edwards and Carter (1985)

seems to be the only one which utilized the finite-difference method for

both viscous and inviscid flow equations for incompressible flows. No

solution schemes of this kind have been noted for transonic flows. In

the present study, a simultaneous interaction method was developed for
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the finite-difference representation of the boundary-layer and potential

equations for transonic flow. The semi-inverse interaction methodwas

also utilized in the present study.

A. Semi-Inverse Method

The semi-inverse interaction procedure used in the present study

solved the boundary-layer equations in the inverse modeinside the

interaction region and used the AF2 schemeto solve the potential

equation for the inviscid flow. These solution procedures have been

outlined in previous chapters.

The coupling algorithm used in the present semi-inverse procedure

is based on ideas introduced by Carter (1978) and Kwonand Pletcher

(1979). In these earlier procedures, the displacement thickness

distribution was updated based on the mismatch of edge velocities in the

viscous and inviscid solutions employing a constant relaxation factor.

This coupling algorithm allows use of overrelaxation which can increase

the rate of convergence in somecases. However, it requires significant

underrelaxation for flows with large separated regions as pointed by

Melnik et al. (1983). This procedure is also expected to be unstable in

supersonic separated flows according to Wigton and Holt (198]). In Le

Balleur's semi-inverse method (1978, 1981a, 1981b), error measurementis

based on the velocity gradient and locally optimum relaxation factors

were applied. The preliminary calculations in the present study also

confirmed that the use of streamwise variation in the relaxation factor

improves the convergence rate. However, the choice of the turbulence
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requiring careful treatment of the relaxation factor for convergence.

In this study, a modification of the coupling algorithm was

developed which resulted in a reduction of 10-40% in the number of

viscous-inviscid global iterations required for a given convergence

level. The new coupling algorithm is given as

n+l Ue V b

m = mn[(l - w) + W(U-_I) ] (4.1)

where Ue v is the edge velocity obtained from the boundary-layer

solution, Ue I is the tangential velocity at the surface obtained from

the solution of the potential equation, n is the global iteration level,

w is a relaxation factor and b is a parameter (the modification referred

to previously) which has been taken as 1.0 in the previous studies. The

typical value of w used in the present calculation ranged from 0.2 to

1.0. Letting b take on values greater than 1.0 gives greater weight to

the local discrepancy between the viscous and inviscid solutions and has

been found to accelerate convergence significantly without jeopardizing

stability. In this work, values of b ranging from 1.2 to 1.7 were used.

It should be noted that this modified form of the coupling algorithm

generally improves the rate of convergence but not the stability

condition of the original algorithm.

In order to start the present semi-inverse interaction algorithm,

an initial distribution of m is needed. This was obtained by solving

boundary-layer equations in the direct mode using pressure data from the

invisaid solution without the viscous effect. Usually, the adverse
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pressure gradient from the fully converged inviscid solution is strong

enoughto cause separation in the boundary-layer calculations. Thus,

only a few iterations were used in the inviscid solution in order to

obtain a mild pressure gradient which did not cause boundary-layer

separation. The distribution of dm/d$ used in evaluation of the

transpiration velocity for the potential equation was obtained by

applying a cubic spline interpolation method to the m distribution.

Before applying the interpolation, m is adjusted by the distance t

between the shear-layer coordinate and the body surface if necessary

(see Equation (3.13)). It was also found that the computing time could

be reduced considerably by not requiring full convergence of the

inviscid solution at each global iteration. The number of inviscid

solution iterations between each global viscous-inviscid iteration used

in this work was 20 ~ 50.

The convergence of the interaction process was determined by the

convergence of m, i.e.,

n+l

_>MAX []m mn I- n ] (4.2)
m

The typical convergence criterion was _ = i x 10 -3 The number of

global iterations to obtain the above convergence varied significantly

from case to case and will be discussed in the next chapter.

The solution procedure of the above semi-inverse method is

summarized as follows:

i) Assume the position of the shear-layer coordinate, if necessary.

2) Calculate the asymptotic solution of inviscid flow with zero
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transpiration velocity using the AF2 scheme to obtain the initial

guess of the pressure distribution.

3) Using the initial pressure distribution, calculate the boundary-layer

solution in the direct mode to obtain the initial m distribution.

4) With the m distribution, calculate the boundary-layer solution in the

inverse mode.

5) If the shear-layer coordinate system was used, adjust the m

distribution with the distance t (see Equation (3.13)).

6) Using the adjusted m distribution, solve the potential equation for

inviscid flow using the AF2 scheme.

7) Examine convergence using Equation (4.2). If the solution meets the

convergence criterion, terminate the calculation. Otherwise, proceed

to step (8).

8) Update the m distribution using Equation (4.1).

9) Return to step (4).

The organization of this calculation procedure is also shown in

Figure ii.

B. Simultaneous Method

When the simultaneous interaction method is used, the potential

equation is solved using the SLOR scheme so that the boundary-layer

equations and potential equation are solved along the same sweep

direction. In the solution procedure of the boundary-layer equations,

the local relation between the pressure gradient parameter, _, and the

nondimensional mass flux m V was given by Equation (2.139). Also, in the
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SLOR procedure for the potential equation, the explicit local relation

between the correction array at the wall Cn *
' i,l' and dml/d $ was

provided by Equation (3.83).

By using a finite-difference approximation for dm"/d$ Cn
' i,1 can be

written in terms of m The optimum choice of the finite-difference

expression for dm /d$ was not clear but was chosen by trial-and-error.

The expressions used for dm /d$ are given as

*I .,.n+l .n+l .n+l

dm I I 3mi )4mi. 1 +d$ . = 2-_ ( mi-2
1

dm 1 .n .n+l .n+l

= mi+l i
d$ i-½ 2--4_(- + 27m. - 27mi_ I

.n+ 1

+ mi_ 2 ) (4.3)

.,°

dm

d$ i+½

.,n ,n ,n .,n

- 24A_(- mi+ 2 + 27mi+ I - 27mi + mi_l)

Hereafter, A$I will be omitted because AS1 was set to unity (see Section

III. C. 2). The finite-difference expression for (d m/d$) i is most

important in obtaining the stable solution, because this term is

directly associated with the transpiration velocity, v . This term was
0

approximated by a second-order-accurate backward differencing formula.

The other two terms at (i-½) and (i+½) stations usually have little

effect on the accuracy and stability of the solution, since these terms

appear due to the skewness of the mesh cell at the wall. They are

approximated by fourth-order-accurate central differencing formulas.

Especially, (dm /d$)i+ ½ was evaluated based on the previously known

distribution of m at the nth-iteration level so that this term was

treated as known quantity.
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Since the sweep direction is along the positive $ direction, the

values of variables for i N i-I are already known at the (n+l)th-

iteration level and the values of the variables for i k i+l can be

evaluated at the nth-iteration level• Therefore, by combining Equation

(4 3) and Equation (3•83) C n
• ' i,l

. n

can be expressed as a function of m.
i

as

,re n

C n = Xlm i + X 2 (4 4)
1,1

The pressure gradient parameter, B, defined in Equation (2.98) can

be rewritten as

dM

= C M d_v
(4.5)

where

M =u / a
e

(4.6)

_-I .2 . -i

C M = [(i - _-j_M )M ] (4.7)

and SV is the transformed $ coordinate used in the analysis of the

boundary-layer equations. Using a velocity potential, M is given as

.t.

Mi+ ½ = R£i ¢_Ili+½
(4.8)

where

!
2

R[ = [(_3 ) ]
i i+_,l

(4.9)

where J and A 3 are the Jacobian and metric quantity of the

transformation used in the inviscid flow analysis and were given by

Equation (3•27).



!67

Applying a central difference approximation, the pressure gradient

parameter at ith streamwise station can also expressed in terms of

velocity potential as follows:

.,.

AS1 dM'"

EI = CM ASV d_ I

C M +- -+

---- (6- R 6-) (4.10)

~ CM ( n _ cn

- A$-_ [R£ i ¢i+l,l i,l )
R£ .¢n+l .n+l

i_l [ i,l - @i-l,l )]

.t.
°,

where M in the CM is approximated by values at the nth-iteration level.

Substituting Equation (4.4) into Equation (4.10) and combining all known

quantities, the pressure gradient parameter in the inviscid flow field

based on the SLOR scheme can be approximated in the following form,

E1 = aim + b I (4.11)

where

._ cM
aI - R£ _i

ASV i-1
(4.12-a)

* CM _¢n - n+l
b I = A$--_[R£ (¢n+l,l i,l ) - R£ (¢n i+k2.¢i_ I i]

v 1 i-i ' '
(4.12-b)

By nondimensionalizing mI in the same way as mv, and treating mt

in Equation (3.13) as a known quantity, the inviscid pressure gradient

parameter, Equation (4.11), can be rewritten in terms of m as follows.

E 1 = aim + b I (4.13)
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Requiring that both pressure gradient parameters be the same, i.e.,

BV = BI, the new value of m can be determined from Equation (2.139) and

b V b I
m = (4.14)

a I a V

When m and 5 are determined, the velocity profile in the boundary layer,

F_ and i
_j are easily calculated using Equations (2.131), (2.132),J

(2.134) and (2.135). Since the Newton linearization procedure was

applied to the boundary-layer equations, the coefficients aV and b V must

be iteratively updated. Therefore, m also has to be iteratively

determined at each local streamwise station until a local boundary-layer

solution converges.

On the other hand, the local inviscid relation given by Equation

(4.11) does not need to be iteratively updated because the potential

equation analysis does not include linearization except for the density

term which is updated at the end of each streamwise sweep. When m

converges, Cn
i,l can be obtained by Equation (4.4). Before calculating

C n
i,l' the relaxation factor, _, is applied to the new m. The global

iteration process is very sensitive to the choice of _ and the optimum

value of _ determined by trial-and-error ranged from 0.2 to 0.7. Given

the value of Cnz,l, the rest of the correction array, C_,j, are

calculated by back-substitution using the recurrence relation, Equation

(3.82).

The above procedure is then advanced to the next streamwise (i+l)

(4.13) as
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station. This overall sweep procedure is repeated until the solutions

converge. The skeleton flow chart for this simultaneous interaction

method is shown in Figure 12. The convergence criterion used in the

present simultaneous interaction method was also based on the

convergence of m, which was given by Equation (4.2). The typical value

of _ ranged from I x 10-3 to 5 x 10 -4. The initial distribution of m

needed to start the interaction was provided in the same way as in the

semi-inverse method.

The calculation procedure for the simultaneous interaction method

is summarized as follows:

I) Assume the position of the shear-layer coordinate, if necessary.

2) Calculate the asymptotic solution of the inviscid flow with zero

transpiration velocity using the SLOR scheme to obtain the initial

guess for the pressure distribution.

3) Using the initial pressure distribution, calculate the boundary-

layer solution in the direct mode to obtain the initial m

distribution.

4) With the m distribution, start the streamwise sweep of the boundary-

layer equation and the SLOR procedure for the potential equation.

5) Calculate the recurrence formula for cn and the relation between
1,j

BI and m at the ith streamwise station from the SLOR solution

procedure.

6) Obtain the relations between 5V and m from the recurrence formula at

the ith streamwise station from the boundary-layer solution

procedure.
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FIGURE 12. Flow chart for the simultaneous method
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7) Calculate the new m by letting BV = B I.

8) Examine convergence of m and the boundary-layer solutions. If the

convergence criteria are met, proceed to step 9. Otherwise, return

to step 6.

9) Apply the underrelaxation to the converged m.

i0) Calculate the correction array, C_ . with the relaxed m.
l,j

Ii) Proceed to the next streamwise (i+l) station.

12) At the end of each streamwise sweep, examine convergence using

Equation (4.2). If the solutions meet the convergence criterion,

terminate the calculation. Otherwise, return to step 4.
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V. RESULTS AND DISCUSSION

This chapter presents the results of the present study. The

results are mainly divided into two categories: incompressible and

transonic flows. First, predictions of incompressible laminar separated

flow are presented. These were obtained as part of a preliminary study

to test the basic performance of the present viscous-inviscid

interaction methods. Second, the computational results for transonic

turbulent flows with separation are presented in order to fully evaluate

the capabilities of the present interaction schemes.

Before the present numerical algorithm was applied to interaction

problems, the viscous and inviscid solution procedures were tested

separately for simple boundary layer and inviscid problems. The inverse

solution procedure for the boundary-layer equations was verified by

solving two laminar separated flows which have been studied numerically

by many others; i) linearly retarded flows studied by Howarth (1938),

Briley (1971), Klineberg and Steger (1974), Carter (1975), Murphy

(1977), Cebeci and Stewartson (1983), and Halim and Hafez (1984); 2)

incompressible flows studied by Carter (1975) and Cebeci et al. (1979).

The inverse solutions obtained by the present method for these flows

provided good agreement with the other available solutions obtained

based on the boundary-layer equations. The solution procedure for the

inviscid flow was checked by comparing solutions for boattail and bump

flows with avai]able inviscid solutions (Wi!moth, 1977; Carter, 1981).

The inviscid solutions obtained by the present methods (SLOR, AF2) also

showed good agreement with the other inviscid solutions. A detailed

_,_ECED|NG PAGE BLANK NOT FILM_
_G_ .J_Z_L_ INTENTIONALU(
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description of above comparisons is, however, not included here.

A. Incompressible Laminar Flow

The present viscous-inviscid interaction methods are demonstrated

by recalculating one of flows studied by Carter and Wornom (1975). They

analyzed a two-dimensional, incompressible, laminar, separated flow over

a flat plate with a trough located downstream of the leading edge using

a conventional inverse viscous-inviscid interaction method.

is prescribed as

The surface

where t is the depth of the trough as shown in Figure 13 and was set to
a

0.03 m in the present calculation. This provides essentially a flat

surface far upstream and downstream of x = 2.5 m. The leading edge of

the plate is set at x = 0 m. The Reynolds number based on freestream

conditions and the unit length is Re = 8 x 104. In their solution

procedure, the boundary layer was calculated in a inverse mode using

vorticity transport and stream function equations and the inviscid flow

was computed by the inverse Cauchy integral formulation based on small

disturbance theory.

This flow over a trough configuration has also been analyzed by

many other investigators including Kwon and Pletcher (1981), Veldman

(1981), Davis and Werle (1981), Carter and Vasta (1982b), and Edwards

and Carter (1985). This separated flow is a good benchmark case to test

the interaction scheme for incompressible flow, since all of the above

y = - t sech(4x - i0) (5.1)
a
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FIGURE 13. Geometric configuration of a flat plate with a trough
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results are in good agreement. Kwon and Pletcher (1981) and Carter and

Vasta (1982b) used the semi-inverse interaction method, and Veldman

(1981) and Davis and Werle (1981) used the quasi-simultaneous

interaction method. All these analyses employed the direct Cauchy

integral formulation for the inviscid flow region. Edwards and Carter

(1985) utilized the semi-inverse and the quasi-simultaneous interaction

methods employing a finite-difference solution procedure for the Laplace

equation for stream function in the inviscid flow region. All the above

works used finite-difference solutions for the viscous region. In the

present study, the semi-inverse and simultaneous interaction methods

employed finite-difference methods for both the viscous and inviscid

regions.

The description of the present method given in Chapters II-IV was

for the general case of compressible flow. For the incompressible

computations, the velocity potential equation was nondimensionalized

using freestream conditions rather than the critical speed of sound and

stagnation density. The rest of the solution procedure essentially

remains the same. In the present calculation, the inflow and outflow

boundary were set to x = -2.5 m and x = 7.5 m, respectively and the

outer boundary was set to y = 5 m for the inviscid flow field. The

inviscid solution was obtained with a mesh of i01 x 31 grid points in

the streamwise and transverse directions, respectively. These mesh

points were formed with nonuniform spacing so that a concentration of

grid points occurred near x = 2.5 m and y = 0 m. The interaction region

extended from x = 1.0 m to x = 4.0 m and 65 grid increments were used in
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the streamwise direction. Inside the interaction region, the mesh for

the boundary-layer solution used the same streamwise grid points as the

inviscid mesh and 60 points were placed uniformly in the normal

direction. The boundary-layer equation was started at x = 0 m from the

uniform freestream conditions. Since the flow was assumed to be

isothermal, the energy equation was not solved and the density and

viscosity were assumed constant. A shear-layer coordinate was not used

and the FLARE approximation was always used in the reversed flow

regions.

The same initial distribution of displacement thickness as used by

Carter and Wornom (1975) was assumed to start the interaction procedure.

For the semi-inverse method, the relaxation factor was set to 0.7 and

parameter b in Equation (4.1) was set to 1.5. For the simultaneous

method, the relaxation factor was set to 0.5. With the semi-inverse

method, approximately 20 global iterations were required to satisfy the

-3
convergence criterion _ = i x I0 (see Equation (4.2)). For the same

convergence level, the simultaneous method converged in about 80

iterations. However, each global iteration cycle in the semi-inverse

method required 50 iterations for the intermediate inviscid solution to

converge. Therefore, the simultaneous method required only about half

the computing time required by the semi-inverse method. However, no

effort was made to optimize the convergence process of either

interaction scheme for this flow case.

Some results calculated with the present interaction methods are

compared with the predictions of Carter and Wornom (1975) in Figures
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14-16. The results of other investigators were not plotted because all

seem to agree very well within graphical accuracy. The predicted

distributions of the surface pressure are shown in Figure 14. The

present solutions are in good agreement with those of Carter and Wornom.

Also, the semi-inverse and simultaneous methods gave almost identical

results as expected. However, a slight difference in the prediction of

the maximum pressure recovery at the bottom of the trough is noticeable.

This difference is believed to be due to the different inviscid solution

procedures used in the two interaction methods.

Figure 15 shows the comparison of the predicted displacement

thickness distributions. Although the present solutions agree well with

that of Carter and Wornom (1975), the displacement thickness downstream

of the trough is slightly overpredicted. A similar tendency was

observed by Kwon and Pletcher (1981) and a detailed discussion about

this can be found in their paper. The predicted skin-friction

distribution is shown in Figure 16 along with the Blasius similarity

solution of a flat plate. The present results show that the predicted

values return to the Blasius solution toward the end of the interaction

region and they are also in excellent agreement with the prediction of

Carter and Wornom except in the vicinity of the reattachment point.

This disagreement near the reattachment point may be due to differences

in the grid spacing. The present mesh spacing in the streamwise

directions was almost twice as large as that used by Carter and Wornom.

A careful comparison of the present results with solutions of other

viscous-inviscid interaction schemes for this laminar flow suggests that
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the present interaction schemes, both the modified semi-inverse and

simultaneous schemes, are capable of predicting the separated flows very

accurately and they are also very consistent with each other. However,

the present interaction methods were designed primarily for the

transonic regime and have not been optimized for incompressible flows.

The incompressible flow case was included to verify that the present

algorithms do produce solutions that agree with established results in

the incompressible limit. This was considered essential before

proceeding to more complex transonic flow cases.

B. Transonic Turbulent Flow

Further evaluation of the present interaction schemes was made by

computing transonic turbulent flows with significant separation which

involved strong interaction between inviscid and viscous regions.

Comparisons will be presented for two different body configurations.

I. Boattail flow

The first to be considered is the transonic flow over an

axisymmetric circular-arc boattail with a solid cylindrical plume

simulator studied experimentally by Reubush (1974). This experiment was

conducted in the NASA Langley 16 foot transonic wind tunnel in order to

determine the effectiveness of utilizing solid circular cylinders to

simulate real jet exhaust plumes. Extensive measurements of surface

pressures and boattail drag were obtained over a freestream Mach number

range of 0.40 to 1.3 for several configurations. The boattail

configuration is shown in Figure 17 and more detailed information can be
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found in an article by Reubush(1974).

In the calculations by the present methods, the computational

domain for the inviscid flow solution, shownin Figure 18, varied with

the body configuration; the upstream boundary was always set at

x/dm = -3.0 and the downstream boundary was set at x/d m = 4.0 and 5.5

for configurations 1 and 2, respectively. The outer boundary was always

set at 5 d . The coordinate x was measured from the starting point of
m

boattail and d is the maximum boattail diameter. The inviscid solution
m

was obtained with a mesh of i01 x 31 grid points in the streamwise and

transverse directions, respectively. These grid points were

nonuniformly distributed so that about a third of total gird points were

placed along the boattail region and a concentration of mesh points was

placed at the boattail-sting juncture. The interaction region was

assumed to extend from x/d = -1.0 to x/d = 2.5 for the configuration 1
m m

boattail and from x/d m -I.0 to x/d = 3.5 for the configuration 2m

boattail. Inside the interaction region, the same streamwise grid

spacing was used at the body surface for both the inviscid and viscous

solutions and 61 ~ 65 grid points were used. In the transverse

direction, 70 boundary-layer grid points were nonuniformly distributed

based on Equation (2.105). The ratio between two adjacent grid spacing,

K, was 1.05.

A velocity profile at the upstream boundary was obtained from the

direct boundary-layer solution starting from the leading edge

(x/d m = -6.64) using the pressure obtained from the undisturbed inviscid

solution. This inflow velocity profile was not updated during the
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4 ×£ 1

/J

/
BOATTAIL GEOMETRIC PARAMETERS

CONF. x£/d m db/d m Rc/d m Bc, deg

1 0.800 0.51 1.429 17.027

2 1.000 0.51 2.163 13.766

3 1.768 0.51 6.500 7.891

FIGURE 17. Geometric configuration of a boattail
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interaction process because the pressure distribution upstream of the

interaction region obtained from the interacted inviscid solution

remained nearly unchanged. The effect of the cone-cylinder forebody was

neglected in the present calculations. The initial distribution of the

mass flux, m, was obtained by the boundary-layer solution in the direct

mode using the pressure data provided by the undisturbed inviscid

solution of the AF2 scheme with only i0 iterations. The distribution of

m downstream of the interaction region was iteratively calculated by

assuming that dm/dx in that region decreased linearly from the value at

the interaction boundary to zero at the exit boundary.

In every turbulent flow calculation for this configuration,

transition from laminar to turbulent flow was assumed to occur near the

leading edge at x/d m = -6.0 and the algebraic Cebeci-Smith and Johnson-

King turbulence models were used. When the Johnson-King model was used,

it was initiated at x/d = -I.i after starting with the Cebeci-Smith
m

model. In the figures to follow, the results of the simultaneous and

semi-inverse methods obtained with the Johnson-King turbulence model

will be shown with the results of the simultaneous method obtained with

the Cebeci-Smith model. Since the results of the semi-inverse

interaction methods obtained with the Cebeci-Smith model were always in

good agreement with those of the simultaneous method obtained with the

same model, they will not be displayed. In the region of reversed flow,

the FLARE approximation was always used.

Even though Reubush (1974) performed extensive measurements for a

wide range of Math numbers, Reynolds numbers and boattail



configurations, only a few representative cases were calculated in the

present study. The first comparison was made for the configuration 2

boattail case at M = 0.8 and Re = 1.22 x 107 , which resulted in a

fully attached flow over a smooth boattail surface without the

appearance of a shock wave. Because of the smooth body surface, the

shear-layer coordinate was not used in this case. With the semi-inverse

method, the relaxation factor was set to 1.2 and the value for parameter

b in Equation (4.1) was also set to 1.5. The solution converged nicely

in 30 iterations to _ = I x 10 -3. Each global iteration cycle in the

semi-inverse method required about 90 seconds on a Perkin-Elmer 3240

computer, which is similar to a VAX-II/780. For the simultaneous

interaction method, a relaxation factor of 0.75 was used and ii0

iterations were required for the same convergence criterion.

Approximately 20 seconds were required to complete one iteration cycle.

As a result, both interaction methods took about the same overall

computing time for this case.

The predicted distribution of surface pressure is shown in Figure

19 and is compared with the solutions of Wilmoth (1977) and Swanson et

al. (1983). As discussed earlier, the solutions of Wilmoth (1977) were

obtained using the direct viscous-inviscid interaction method with

experimentally determined separation and reattachment points. Swanson

et al. (1983) solved the Navier-Stokes equations with the composite

velocity formulation and used an algebraic Cebeci-Smith turbulence model

with a relaxation formula of Shang et al. (1976). The comparison shows

that the present solutions with the J0hnson-King model are in the best
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agreement with the experimental data. The results of the Cebeci-Smith

model in the present analysis and Navier-Stokes solution by Swanson

et al. (1983) show a slight overprediction of the pressure in the

vicinity of x/d m 1.7. The predicted skin friction for this flow is

given in Figure 20. Unfortunately, experimental data were not available

for comparison. As in the comparison of the pressure distribution, the

predictions from both the simultaneous and semi-inverse method with the

Johnson-King model are indistinguishable. However, the predictions of

the Cebeci-Smith model differ from the others upstream and again

downstream of the boattail. The Johnson-King model predicts the lower

skin friction upstream of the boattail but higher skin friction in the

downstream region. The same tendency was observed in every other

calculation in the present study. This difference is nearly insensitive

to the choice of the starting point for the Johnson-King model.

The next comparison is for the separated flow over the

configuration 1 boattail, the most steep boattail tested by Reubush

(1974), at the subcritical conditions of M = 0.7 and Re = 1.16 × 107 .

Experimental data indicated that a pressure plateau was formed over the

last 30,% of boattail followed by a trailing edge compression without the

appearance of a shock wave. The separation point determined from oil

flow visualization studies by Abeyounis (1977) on the same flow model

was x/d = 0.51.
m

In the present calculations, the relaxation factor was set to 0.35

and 0.50 for the semi-inverse and simultaneous interaction methods,

respectively. The convergence behavior of the iteration process
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depended on the turbulence model used. In the semi-inverse interaction

method with the same convergence criterion as used in the previous case,

the Cebeci-Smith model required about 70 ~ 80 iterations and the

Johnson-King model required i00 ~ 120 iterations. In the simultaneous

interaction method, the turbulence models used had little effect on the

convergence behavior and the solutions converged in 170 ~ 200

iterations. In terms of total computing time, the simultaneous method

required only about 40 ~ 50% of that needed in the semi-inverse method.

Figure 21 compares the surface pressure distribution predicted by

the present interaction schemes with experimental data. Also shown in

Figure 21 are the Navier-Stokes solutions obtained by Swanson et al.

(1983) and the viscous-inviscid interaction results of Wilmoth (1977).

Figure 22 shows the calculated variation of the skin-friction

coefficient and the Navier-Stokes solution of Swanson et al. (1983). No

experimental skin-friction data are available at the present time for

comparison. The present solutions obtained with the algebraic Cebeci-

Smith model significantly overpredict the surface pressure variation in

the vicinity of the boattail-sting juncture. The predictions of the

separation and reattachment points (x/d m = 0.64 and 0.88, respectively)

by the Cebeci-Smith model are also very poor. The Navier-Stokes

solutions obtained with the Shang-Hankey turbulence model provide better

predictions than the present solution obtained with the Cebeci-Smith

model. The prediction of surface presoure in the reversed flow region

is, however, still much higher than the experimental data, and the

solution does not seem to capture the pressure plateau which is
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characteristic of the extensive separation. Also, the prediction of the

separated region is not much better than present prediction obtained

with the algebraic Cebeci-Smith model. The interaction results by

Wilmoth show better agreement with the experimental data than the above

results and clearly exhibit the general characteristics of the pressure

plateau but show a rapid pressure increase in the second recovery

region.

On the other hand, the present prediction based on the Johnson-King

turbulence model generally agrees very well with the experimentally

observed data. Especially, the prediction of the separation point

(x/d m = 0.56) is much better and the predicted reversed flow region is

almost twice as large as given by the other solutions. Since the

experimentally observed data for the reattachment point are not

available, it is difficult to argue which prediction is better.

However, based on the view of the other experimental data considered in

the present study, the reattachment point usually occurs near the point

of maximum pressure. On this basis, the prediction of the reattachment

point by the Johnson-King model is believed to be better than the other

solutions.

Figures 23-25 show the distributions of the displacement thickness,

maximum Reynolds stress and the mean velocity profiles calculated by the

Cebeci-Smith and Johnson-King models for the same separated boattail

flow. Experimental and other numerical data were not available for

comparison. The displacement thickness predicted by the Johnson-King

model is larger by as much as 30% than that predicted by the Cebeci-
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Smith model. This is consistent with the smaller pressure recovery

predicted by the Johnson-King model downstream of the boattail.

The most striking difference between the two models can be found in

the comparison of the calculated variations of the maximum Reynolds

stresses displayed in Figure 24. The Cebeci-Smith model predicts a

sharp peak in -u'v' , which suggests that the turbulence field is
m

strongly dependent upon the local flow conditions. On the other hand,

--q--7
-u v predicted by the Johnson-King model shows more gradual increasem

over a longer streamwise distance, which is responsible for the thick

displacement thickness and smaller pressure recovery. From the velocity

profiles shown in Figure 25, a major difference can be observed in the

inner part of the boundary layer: the Johnson-King model predicts much

larger separation bubble than the Cebeci-Smith model.

The results for the boattail case presented in Figures 19-25 were

obtained using a body surface oriented coordinate system for the viscous

calculation. Guided by these results, the calculations were repeated

using two different shear-layer coordinate systems. First, a dividing

streamline (_ = O) from the previous results was chosen as the shear-

layer coordinate. A second choice of shear-layer coordinate was made so

as to align the coordinate with the displacement surface in the reversed

flow region. The coordinate then asymptotically approached the body

surface. A comparison of the calculations using both shear-layer

coordinates with the previous results obtained using the body-oriented

coordinate shows differences too small to be drawn on the figures, and

suggests that the use of the shear-layer coordinate system provides no
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important advantage in the calculation.

From viewing the results of this subcritical flow case, it becomes

obvious that the new simultaneous viscous-inviscid interaction method

can usually predict flows with pressure driven separation more

economically than the semi-inverse method, for the same degree of

accuracy. It was also found that the accuracy of the solutions is more

strongly dependent on the turbulence modeling than the interaction

algorithm. The Johnson-King turbulence model produced much better

predictions than the algebraic Cebeci-Smith model for separated flows

with viscous-inviscid interaction.

2. Bump flow

The next case to be presented is the shock interacted flow field

about an axisymmetric circular-arc bump studied experimentally by

Bachalo and Johnson (1979). This flow served as the primary test case

for the present study because of the availability of extensive

experimental data. This flow configuration, shown in Figure 26,

consists of an axisymmetric circular-arc bump attached to a circular

cylinder placed parallel to the flow direction. The cylinder, 15.2 cm

in outside diameter, extends 61 cm upstream of the bump leading edge.

The bump has a chord of 20.32 cm and is 1.9 cm in thickness. The bump

leading edge is smoothed by a small fillet, of radius 18.3 cm, to

prevent separation at the leading edge. The model was initially tested

at a freestream Mach number, M = 0.875 and freestream Reynolds number,

Re = 1.36 x 107 in the NASA Ames 2 x 2 foot transonic wind tunnel.
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FIGURE 26. Geometric configuration of a bump
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Later, Horstman and Johnson (1984) reported the measurements for

the same body configuration obtained in the 6 x 6 foot supersonic wind

tunnel over a range of freestream Mach numbers from 0.4 to 0.94. This

experiment was carried out in order to evaluate the importance of the

interference effect of the wind tunnel walls. For M = 0.875, both

results agreed well on general aspects of the flow including the

distribution of the surface pressure. However, a slight difference was

noticeable in the location of the shock wave; the shock wave in the

larger wind tunnel was located about 0.01 chord length upstream of that

measured in the smaller wind tunnel. Also, the pressure recovery

downstream of the shock in the larger wind tunnel was slightly smaller

than that observed in the smaller wind tunnel as shown in Figure 27.

Their experimental data can be summarized as follows. For a Mach

number up to 0.8, the flow was subcritical (no shock wave appears) and a

small separation bubble was present near the bump-sting juncture. The

locations of the separation and reattachment points were somewhat

insensitive to the Mach number in subcritical cases. As the Math number

passes 0.8, the flow becomes supercritical and the shock wave forms

approximately at x/C = 0.65 (x is referenced to the forward intersection

point of the arc of the bump with the cylinder and measured parallel to

the cylinder and C is the chord length of the bump). As the Mach number

is increased further, the location of the shock wave moves very slightly

downstream and a large pressure plateau is formed in the vicinity of the

bump-sting juncture followed by the smooth compression after the

juncture. The separation bubble also begins to grow very rapidly; the
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separation point movesupstream toward the shock wave location and the

reattachment point moves farther downstream. For example, at

M = 0.875, the shock wave is located approximately at x/C = 0.67 and

the separation and reattachment points are located at x/C = 0.69 and

x/C = 1.17. The extent of the separated region was determined by oil-

flow visualization. Considerable uncertainty was reported to exist in

interpretation of these observations, especially the reattachment point.

Johnsonet al. (1982) performed numerical computations using the

Navier-Stokes equations with the algebraic Cebeci-Smith and Wilcox-

Rubesin (k-_ 2) two-equation turbulence models. Their results indicated

that the shock location and the separation point were predicted

substantially downstreamof the experimentally observed position and the

more sophisticated two-equation model did not provide significantly

better predictions than the simple algebraic model. Horstman and

Johnson (1984) used the k-E turbulence model developed by Jones and

Launder (1972) in their Navier-Stokes solutions and obtained a slight

improvement in the predictions of the shock location and the separation

point over the results of Johnson et al. (1982). Most of the

improvementwas, however, due to the new outer boundary condition: they

used the freestream outer boundary condition instead of the solid wall

boundary condition based on the experimental data which indicated that

the flow was almost free of the wind tunnel wall effects. However, this

resulted in an overprediction of surface pressure downstreamof the bump

trailing edge region. Recently, Johnson (1985) solved the samebump

flow using the Navier-Stokes equations with the Johnson-King turbulence
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model. The overall predictions were in much better agreement with the

measurements than the above Navier-Stokes solutions based on the

algebraic and two-equation models.

The semi-inverse viscous-inviscid interaction approach was applied

to the same flow by Carter (1981) and Carter and Vasta (1982a). The

solution was obtained with the algebraic Cebeci-Smith model and predicts

the shock location better than the previous Navier-Stokes solutions but

the pressure plateau was not captured at all and the pressure at the

bump trailing edge region was substantially overpredicted. It was also

reported that the predictions were improved by reducing the Clauser

constant of the Cebeci-Smith model by half (Carter, 1981) and by using

the relaxation formula of Shang and Hankey (1975) (Carter and Vasta,

1982a).

In the present calculations, i01 × 41 mesh points were nonuniformly

distributed over the inviscid computational domain which extended from

x/C = -2.0 to x/C = 3.0 in the streamwise direction and 2.5 chord

lengths in the transverse direction. Preliminary calculations were

performed with several different computational domains and mesh sizes.

The computational domain and the number of grid points were reduced to

the smallest values that still provided mesh independent interaction

solutions. About 40% of the mesh points along the body surface were

placed over the bump (0 _ x/C _ 1.0) with the greatest concentration

near x/C = 0.65. The smallest mesh spacing was Ax/C = 0.015. The

viscous-inviscid interaction region extended from x/C = -0.5 to

x/C = 1.5 and occupied 61 mesh points in the streamwise direction. For
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the viscous mesh inside the interaction region, the inviscid mesh

spacing along the wall was used in the streamwise direction and 70

points were distributed nonuniformly across the boundary layer with

K = 1.09 (see Equation (2.105)).

The incoming velocity profile for the boundary-layer analysis was

again obtained from the direct solution of the boundary-layer equations

starting from the nose of cylinder (x/C = -3.0) using the pressure

obtained from the undisturbed inviscid solution. The initial

distribution of m was provided by the direct solution of the boundary-

layer equations with the pressure data obtained by the undisturbed

solution of the potential equation using the AF2 scheme with i0

iterations. The distribution of m downstream of the interaction region

was obtained in the same way as in the boattail flow calculations.

Transition from laminar to turbulent flow was made at x/C = -2.8.

Calculations were made using both the Cebeci-Smith and Johnson-King

turbulence models. The switching point for the Johnson-King model was

x/C = -0.6.

The convergence behavior of the viscous-inviscid iterative

procedure was found to be very sensitive to the choice of turbulence

model and the freestream Mach number. This implies that convergence of

the interaction process is strongly dependent on the size of the

separated flow region. The relaxation parameter was decided by a trial-

and-error method. In subcritical cases which resulted in small

separation regions, a relatively large value of the relaxation factor

was used regardless of the turhulence models (0.7 ~ 1.0 for the semi-
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inverse method and 0.6 ~ 0.75 for the simultaneous method) and the

solutions usually converged very well for both interaction methods

(35 ~ 50 iterations for the semi-inverse method and about i00 iterations

for the simultaneous method). When the semi-inverse method was used for

supercritical cases with the Mach number less than 0.9, a relaxation

factor of 0.4 ~ 0.6 was used with the Cebeci-Smith model and convergence

-3
to E = 1 × 10 was achieved in i00 ~ 150 iterations. Each global

iteration cycle in the semi-inverse method required about 2 minutes.

When the Johnson-King model was used in the semi-inverse method, a

smaller value of the relaxation factor (0.2 ~ 0.3) was necessary to

obtain convergence. However, the solutions converged to only about

-2
g = 1 × i0 after 40 ~ 50 iterations. It has not been possible to

reduce the residual further due to the occurrence of oscillatory

behavior in the convergence pattern. For M = 0.9, the solution by the

semi-inverse method diverged even with a small relaxation factor (0.i).

On the other hand, with the simultaneous method for the supercritical

cases with the Math number up to 0.9, the convergence was still obtained

with a relatively large value of relaxation factor (0.4 N 0.7)

regardless of the turbulence model and 150 ~ 250 iterations were needed

-3
for _ = i x i0 A typical calculation with the simultaneous

interaction method requires 60 ~ 80 minutes on a Perkin-Elmer 3240

minicomputer.

Before the interaction method was applied, the present numerical

algorithm was carefully tested especially for the inviscid flow

calculation. In order to obtain a meaningful comparison of the semi-



inverse and simultaneous interaction methods, the AF2 and SLORschemes

must provide nearly the same inviscid flow solutions. For subcritical

cases, the undisturbed inviscid solutions of the SLORand AF2 schemes

were found to be almost identical. When the artificial compressibility

approach is used in the solution procedure of the full potential

equation for supercritical cases, it is already known that the

prediction of the shock strength is very sensitive to the magnitude of

density biasing. Therefore, the density biasing magnitude must be

decided carefully. This was done by numerical experiments and

comparison with the results of the other inviscid code and available

solutions in the literature. Figure 27 compares the undisturbed

solutions of the SLOR and AF2 schemes for M = 0.875. Also shown in

Figure 27 is the inviscid solution of Carter (1981) for comparison.

Both solutions are in good agreement except that the SLOR solution shows

a slightly stronger shock than the AF2 solution. This difference

disappears when the viscous effect is included.

Figures 28-31 compare the calculated surface pressure distributions

with the experimental data taken from the 6 × 6 foot wind tunnel at

H = 0.6, 0.8, 0.875 and 0.9 by Horstman and Johnson (1984). The

Navier-Stokes solutions obtained by Johnson (1985) using the Johnson-

King turbulence model are also compared for all the above Mach numbers.

For M = 0.875, the experimental data of the 2 × 2 foot wind tunnel

(Bachalo and Johnson, 1979) and the Navier-Stokes solutions obtained by

Horstman and Johnson (1984) based on the Cebeci-Smith and k-g turbulence

models are also displayed. The Cebeci-Smith model used in the present
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interaction scheme overpredicts the pressure in the separated region and

does not capture the pressure plateau characteristics at all. The same

trend is also observed in the Navier-Stokes solutions of Horstman and

Johnson (1984) using the same Cebeci-Smith turbulence model, but the

present predictions of the shock position seem to agree slightly better

with the experimental data than the Navier-Stokes solutions based on the

same Cebeci-Smith turbulence model. The overall predictions of the

present interaction method using the Johnson-King model are observed to

agree very well with the experimental data and the Navier-Stokes

solutions of Johnson (1985) with the same Johnson-King turbulence model.

The present semi-inverse and simultaneous interaction methods again

give almost identical final solutions except for M = 0.9 for which the

semi-inverse method failed to converge. The shock position is

reasonably well predicted and the pressure plateau behavior is well

described by the Johnson-King turbulence model for all Mach numbers.

However, in the supercritical cases, the shock strength is slightly

underpredicted and the shock location is predicted upstream of the

measured data by both the semi-inverse and simultaneous interaction

method. The difference between the solutions obtained by the present

interaction method and the Navier-Stokes solutions based on the same

Johnson-King model becomes larger as the Mach number is increased. One

interesting observation can be made for the M = 0.875 case. While the

Navier-Stokes solutions of Johnson (1985) agreed very well with the

experimental data of the 2 × 2 foot wind tunnel, the present predictions

agree better with the 6 × 6 foot wind tunnel data. Considering that the
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wind tunnel wall effect should be much smaller in the larger wind

tunnel, it could be argued that the present interaction solutions

provide the best agreement with the experimental data.

In the present calculations for this flow case, solutions were

obtained using both the FLARE approximation and the windward

differencing scheme in the boundary-layer equations. Figure 31 compares

the pressure coefficient predicted using the FLARE approximation with

the predictions using the windward differencing for the flow at

M = 0.9. This flow has the largest separation bubble among flows

considered in the present study. The two solutions gave nearly

identical results. The convergence behavior seems to be insensitive to

the use of the FLARE approximation and the windward differencing scheme.

The skin-friction coefficient predicted by the present interaction

scheme using the Cebeci-Smith and Johnson-King models for M = 0.6,

0.875 and 0.9 are shown in Figures 32-34. Experimental data and other

numerical solutions for skin friction are not available at the present

time. Again, there is little difference between the solutions of the

semi-inverse and simultaneous method. For M = 0.6, the difference

between the predictions of the Cebeci-Smith and Johnson-King turbulence

models is very small and the predicted separation and reattachment

points are in good agreement with the experimental data.

For >I = 0.875, the difference between the Cebeci-Smith and

Johnson-King turbulence model becomes evident. The Cebeci-Smith model

results in a much smaller separation region and the separation and

reattachment points predicted by the Johnson-King model are seen to be
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in fairly good agreementwith the measurements. As was observed in the

calculation of the boattail flow, the skin friction predicted by the

Johnson-King model shows a more rapid increase after the reattachment

point than the prediction by the Cebeci-Smith model. In Figure 34, the

predictions of skin friction by the FLAREapproximation and windward

differencing are comparedfor M = 0.9. Somedifferences can be

observed in the region before the reattachment point but overall, the

agreement is reasonably good and the predictions of the separation and

reattachment points agree very well. Therefore, it was felt that the

use of the FLAREapproximation was justified for the flows considered in

the present study.

Figure 35 comparesthe predicted separation and reattachment points

with the experimentally observed values and values from the Navier-

Stokes solutions obtained using the Jones-Launder (k-E) turbulence model

(Horstmanand Johnson, 1984) and Johnson-King turbulence model (Johnson,

1985). The predictions obtained by the present simultaneous interaction

methodwith the Johnson-King model is generally in good agreementwith

the measurements. The reattachment point is predicted slightly

downstreamof the measuredvalue. The predictions by the Cebeci-Smith

model are relatively good in lower Machnumbers, but the disagreement

with the measurementsbecomeslarger as the Machnumber is increased

above 0.85. On the other hand, the Navier-Stokes solutions by Johnson

(1985) with the Johnson-King model are observed to significantly

underpredict the separation point comparedto the measurementsand the

present results with the samemodel. It is also interesting to note
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that the Navier-Stokes solutions with the k-g two-equation model failed

to predict separation when the freestream Math number was less than 0.8.

Note that the experimental data of the M = 0.875 case shown in the

figures to follow are the measurements taken in the 2 x 2 foot transonic

wind tunnel. Measurements from the 6 x 6 foot wind tunnel are not

available except for the surface pressure distribution at the present

time. The predicted and measured displacement thickness distributions

of the boundary layer for M = 0.6 and 0.875 are compared in Figures 36

and 37. None of the predictions agree really well with the measurements

over the full extent of the flow. Discrepancies are especially evident

after the bump-sting juncture (x/C = 1.0). The difference becomes

larger at the supercritical Mach numbers. The present solutions based

on the Johnson-King model predict the largest displacement thickness.

This is also consistent with the fact that the pressure recovery along

the bump trailing edge predicted by the Johnson-King model in the

present study is relatively the smallest.

Figures 38 and 39 show the comparisons of the predicted maximum

Reynolds stresses and the experimental data for M = 0.6 and 0.875. In

the comparison of the Reynolds shear stress of the boundary-layer

calculations with the measurements, the effect for the rotation of

coordinate along the body surface may be significant and must be

corrected. The experimental data shown in Figures 38 and 36 are the

values recalculated by Johnson (1985) from the measurements of Bachalo

and Johnson (1979) by performing a coordinate transformation from the

rectangular measurement coordinates to shear-layer coordinates. This
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comparison shows the most striking difference between the algebraic

Cebeei-Smith and Johnson-King model. The Cebeci-Smith model shows more

rapid increase and abrupt decrease in -u'V'm, while the Johnson-King

model provides more accurate prediction near the shock wave and smoother

development across the flow field. One thing to notice is that the

present predictions with the Johnson-King model indicates a slower decay

downstream of the reattachment point than do the Navier-Stokes solutions

obtained by Johnson using the same model. This slower decay is believed

to be the cause of the rapid increase in the skin-friction coefficient

after the reattachment point predicted by the Johnson-King model in the

present method. In his Navier-Stokes solutions, Johnson (1985) found

that this slow decay in the maximum Reynolds stresses was due to the

fact that the value of o(x) in Equation (2.73) grew to unrealistically

high values downstream of the reattachment point where a local

equilibrium state was expected to be almost restored. The reason for

this behavior is believed to be an underestimation of the turbulent

viscosity length scales in the inner part of the boundary layer as

pointed out by Johnson (1985). Since o(x) is the measure of

nonequilibrium effects, it was initially expected to be close to unity

after the reattachment point. However, the use of o(x) = 1.0 after the

reattachment point resulted in the decay of the maximum Reynolds

stresses being too rapid after the reattachment point. Therefore,

Johnson suggested that the value of o(x) be limited by an upper bound

such as 3.0. However, such a limit was not used in the present

calculations because the value of o(x) did not grow as fast as in the
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Navier-Stokes solutions of Johnson. It never exceeded a value of about

3.5.

The velocity profiles predicted by the Johnson-King and Cebeci-

Smith models for M = 0.875 are compared with the measurements and

Navier-Stokes solutions obtained by the Johnson-King model in Figures 40

and 41. The agreement between predictions of the Johnson-King model and

the measurements is especially good in the separated flow region. After

the reattachment point, the predictions of the Cebeci-Smith model agree

better with the measurements. This slow flow recovery downstream of the

reattachment point predicted by the Johnson-King model appears to be a

shortcoming that requires improvement. However, the effect of this

discrepancy on the prediction of the surface pressure distribution is

small. The difference in the predicted velocity profiles obtained by

the FLARE approximation and windward differencing scheme is negligibly

small. Figures 42 and 43 compare the profiles of Reynolds shear stress

calculated by the present method with the measurements and the Navier-

Stokes solutions obtained with the Johnson-King model for M = 0.875.

Overall, the predictions of the Johnson-King model show better agreement

with the measurements than predictions of the Cebeci-Smith model,

especially downstream of the bump-sting juncture. However, in the outer

region of the boundary layer, the Reynolds stresses predicted by the

Johnson-King model decrease too slowly.

Figure 44 presents a Mach contour plot obtained by the present

simultaneous interaction method with the Johnson-King model at

M = 0.875. Note that the plot does not take into account viscous



226

to

LO

6

o

x

KID =f

cO

>
o

0

o
o,.._

o

o

oO

o
o

II

o _J
o

0

-4"

r_

P_



m

X

0

II

X

0

I!

X

0
0
0

II

X

WO ',_'

I

i
0

0

0

0

o
0

0
o

0

0

_8

0

0

4_

0

0

•1-1 _._
00

0
0

II

8

0

m



228,

ta_

0

0 0

v ! Z
U

_Z_

_Z_
_0_00

Z_

XCDI-.-- ! !

I
I I

o

0

II

0

,m-I
O0

CD

II

X

0

0

0

X

8

0

d
II

X

C

I I

1113'k"

3b

0

0
'4-4 tr'/

moO

_d
-,'4

0
_ g

m

E

m

m •

_ 0
0

_ 0
_) ,_

Ua

r_



229

(J

0

4J

CO

0_-_
u3

O0

0

0

_J
_C_
O0

_'_ 0
0

_0

H



230

1.6

0

1.2

0.8

0.4

0.0

CONTOUR
INCREMENT : 0.025

M=I

0.0 0.4 0.8 1.2 1.6

×/c

FIGURE 44. Mach contour plot for a transonic turbulent flow over a bump

(M= TM 0.875)



9RI

regions explicitly because it was made based only on the inviscid part

of the interacted solution. The body surface shown in this figure does

not represents the actual body surface but the shear-layer coordinate

used in the present calculation. The predicted shock location is in

good agreement with the measurements as shown in the surface pressure

comparison. The experimental observations and the Navier-Stokes

solutions by Johnson (1985) indicated that the shock is highly curved in

the inviscid region so that the shock wave far from the body surface is

nearly aligned with the bump-sting juncture. However, the present

solution shows almost vertical shock wave formation. This is believed

to be due to the error caused by the velocity potential formulation for

the inviscid flow. The source of the error is likely the neglect of the

entropy rise across the shock in the potential flow analysis. To be

more accurate, the inviscid analysis should satisfy the Rankine-Hugoniot

relation rather than the isentropic relation across the shock wave and

the effect of the rotational flow generated by the curved shock should

be accounted for.

In the early stage of the present study, the effect of changing the

modeling constants of the Johnson-King model, a I and Cdif, was evaluated

using the simultaneous interaction method. As discussed by Johnson and

King (1985), the interaction solution was found to be insensitive to the

choice of Cdi f. On the other hand, the effect of varying a I upon the

prediction is noticeable. Some of the present calculations were

performed using several different values of a I. The typical value

deduced from experimental measurements for compressible flows ranges
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between 0.2 and 0.3. Figures 45-48 compare predictions with different

values of a I in the range 0.25 ~ 0.4 for the flow at M_ = 0.875. Note

that all the Johnson-King model results shown in the previous figures

were obtained with a I = 0.25.

As can be seen in these figures, the results upstream of the shock

wave seem insensitive to the value of al, but differences become evident

downstream of the shock wave. Figure 45 shows that the shock position

moves very slowly in the downstream direction and the pressure recovery

in the bump trailing edge region increases with increasing values of a
I"

Interestingly, predictions of the surface pressure with the larger a 1

(0.35 ~ 0.40) are in better agreement with the measurements of the 2 x 2

foot wind tunnel, while the prediction with a smaller value (0.25) of a 1

agrees much better with the measurements of the 6 x 6 foot wind tunnel.

The predicted location of the separation point does not seem to be

very sensitive to the value used for a I. The location of the

reattachment point, however, does exhibit a dependence upon a I. With a

larger value of al, the predicted reattachment point moves upstream. As

shown by Figures 47 and 48, increasing the value of a I from 0.25 to 0.35

appears to give improved predictions for the displacement thickness and

the maximum Reynolds stresses distributions. However, considering the

fact that these measurements were taken in the 2 x 2 foot wind tunnel

and recalling the observation made in the comparison of the surface

pressure, these variations are thought to be within the range of errors

associated with the experimental data. Therefore, it is difficult to

conclude which value of a I gives the best overall predictions. It seems
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clear that values of aI in the range 0.2 ~ 0.3 give reasonably good

predictions for most of the turbulent flow calculations in this study.
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VI. CONCLUSIONS

A. Concluding Remarks

Two new viscous-inviscid interaction procedures have been developed

and evaluated for transonic flows. Both employ an inverse finite-

difference solution of the boundary-layer equations and a direct finite-

difference solution to the conservative form of the full potential

equation. The boundary-layer equations are solved in a fully implicit

manner using Newton linearization with coupling of the continuity and

momentum equations. The solution procedures have been developed using

both the SLOR and AF2 schemes to solve the full potential equation. The

two interaction procedures employ different coupling algorithms; one is

similar to the procedure developed by Carter (1979) (the semi-inverse

scheme) and the other, known as the simultaneous methods, is new as

applied to finite-difference forms of the boundary-layer and full

potential equations for transonic flows. The Cebeci-Smith and Johnson-

King turbulence models were used for turbulent flow calculations. The

present schemes were applied to predict flows over three different

configurations in which significant flow separations occurred;

incompressible laminar flow over a flat plate with a trough, transonic

flow over an axisymmetric circular-arc boattail, and transonic flow over

an axisymmetric circular-arc bump attached to a circular cylinder. From

the study described in the previous chapters, the following conclusions

can be made.

p1REC_D_G PAGE BLANK NOT FILMED
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i. A modification to the semi-inverse interaction method proposed

by Carter (1979) has been introduced and resulted in a reduction of

30 ~ 50% in the number of global iterations required for a specified

level of convergence for the cases considered in this paper. The semi-

inverse method is found to be stable for calculations of the subcritical

flow with separation. However, it becomes less stable in supercritical

flow with increasing size of the separated region so that a smaller

value of the relaxation factor is required to obtain convergence. The

value of the relaxation factor required seemed to depend upon the

turbulence model used. The Johnson-King model required the use of a

smaller relaxation factor than was needed for the Cebeci-Smith model and

a larger number of global iterations was generally required for

convergence. This apparent sensitivity to turbulence models may

actually be only a sensitivity to the viscous solution being obtained,

which was significantly different for each of the two models. The

Johnson-King model tended to predict a larger separated region which

could be the major cause for the requirement of a smaller relaxation

factor and more global iterations for convergence. In attempting the

calculation of the bump flow at M _ 0.9, the semi-inverse method failed

to provide convergence regardless of the turbulence model used.

2. A new simultaneous interaction method has been developed by

obtaining the solutions of the boundary-layer equations and the SLOR

procedure of the potential equation simultaneously. The predictions

from this interaction method are in good agreement with those from the

semi-inverse method when the latter gives a converged solution. For the
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calculation of subcritical flows with a relatively small separated

region, the simultaneous interaction method is usually about twice as

efficient as the semi-inverse method. Additionally, the simultaneous

interaction method was found to be stable over a wider range of flows

than the semi-inverse method. Also, the simultaneous interaction method

seems to be relatively insensitive to the turbulence model used.

Moreover, by employing a pseudo-time dependent approach in the iterative

procedure of the Newton linearization method for the boundary-layer

equation, the simultaneous method takes only 20 ~ 30% of the total

computing time required by the semi-inverse method for supercritical

flow calculations.

3. The predictions for turbulent flows are quite dependent upon

the turbulence model used. Of the two models evaluated, the algebraic

Cebeci-Smith model generally predicted very poorly for separated flows

at both subcritical and supercritical Math numbers. The present

solutions with the Cebeci-Smith model significantly overpredicted the

pressure recovery and underpredicted the size of the separation bubble

and the displacement thick_ss. The position of the shock wave is

predicted reasonably well by the Cebeci-Smith model. The turbulence

model proposed by Johnson and King (1985) was found to provide generally

better predictions than the algebraic Cebeci-Smith and more

sophisticated two-equation models for the transonic separated flows

considered. The predicted locations of the shock wave, separation and

reattachment points 'using the Johnson-King model agree very well with

the experimental data. The displacement thickness is underpredicted in
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the largely separated flow region and the flow recovery toward the

equilibrium stage after the reattachment point is also underpredicted by

the Johnson-King model. The effect of varying the a I parameter in the

Johnson-King model was investigated. The value of a I = 0.25 (used by

Johnson and King (1985)) is found to give generally satisfactory

predictions; however, for each separated case computed, it was possible

to obtained slightly improved predictions by adjusting the a I value.

Clearly, the Johnson-King model provides much better predictions than

the algebraic Cebeci-Smith model for these flows. Yet some room for

improvement in the turbulence modeling for separated flows remains.

4. The predictions obtained by the FLARE approximation showed good

agreement with those obtained by the windward differencing scheme.

B. Recommendations for Future Study

The present viscous-inviscid interaction method generally provides

good predictions for flows considered in the present study. However,

improvement appears possible in several areas in order to provide better

predictions for flows with strong interaction. Although the velocity

potential formulation is accurate enough for most of the transonic flow

regime, errors associated with the isentropic assumption for the shock

jump conditions increase with increasing strength of the shock wave.

This error can be completely eliminated by using the full Euler

equations, but then computational efficiency must be sacrificed.

Instead, the full potential formulation can be modified by using an

entropy correction approach suggested by Klopfer and Nixon (1983) and
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Hafez and Lovell (1983, 1984). This approach is expected to be

effective in reducing the error caused by the isentropic assumptions.

The present simultaneous interaction method is based on the SLOR

solution procedure for the inviscid flow region. Improvement in the

rate of convergence might be possible by employing a faster iterative

relaxation algorithm like the ADI or AF2 schemes as in the case of the

semi-inverse interaction method. Recently, significant progress has

been made in improving the efficiency of solution algorithms for the

time-averaged Navier-Stokes equations. Work should continue on Navier-

Stokes algorithms and these, too, should be useful in predicting complex

transonic flow with strong viscous-inviscid interaction.

The newly proposed Johnson-King model is very simple to use and

shows great promise for accurately predicting flows with large separated

regions. However, improvement appears possible. A better description

of flow recovery toward the equilibrium state, and better modeling of

the diffusion terms in the transport equation for the maximum Reynolds

stress are two areas where further work should be done.
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IX. APPENDIX A: COEFFICIENTS IN THE FINITE-DIFFERENCE

REPRESENTATIONS OF THE CONTINUITY AND MOMENTUM EQUATIONS

The coefficients in the finite-difference representation of the

continuity equation, given by Equation (2.114), are

i
a. = An__a

d, _ b,

] J

h. = 0

]

S °

J __ iAn (Ej+_ i)2 - j-

= - _s
cj j

When the FLARE approximation is used, the coefficients of the

finite-difference representation of the momentum equation, given by

Equation (2.115), are

A°

J
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Dj = - (Aj + Bj) + <gC ,-,2(2_j - F i-l)j + 2_2_.j

E - -_ i "_ -- + K(F ]
J A_ (K+I)A$_[_(Fj+I - Fj) j Fj_I)
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2C _ .Fi-i _ _.) + 2g_(_. - _.2)
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When the windward differencing is used, the coefficients of the

finite-difference representation of the momentum equation, given by

Equation (2.115), are
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H. = (G. F.2)
J J J

j An_(K$1)A$+(_j - _j )[ ( +i - ) + K(_.j - Fj_I)]

2 _ .Fi+l _ 2g_<_jh_+g_j_ j - F.)j + _ _2)j

Note that the provisional values with tilde (~) are always evaluated at

ith streamwise station.
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X. APPENDIXB: COEFFICIENTSIN THEFINITE-DIFFERENCEREPRESENTATION

OFTHEENERGYEQUATION

Whenthe FLAREapproximation is used, the coefficients in the

finite-difference representation of the energy equation, given by

Equation (2.122), are

j An_(K+l) [ _(¢ I _ ¢_) - 2 NAn+ l,j+½ ]

B .

3
1 " 2 N

An_ (K+I)[KA_ (¢_ i-I_ - @j ) " An_ l,j-½ ]

C C 2 i i-I
j = A--__gFjGj

+
2

An (K+I)(N2,j+½ - N2,j-½)

C 2_i

Dj = - (Aj + Bj) + A-__g _j

When the windward differencing is used, the coefficients in the

finite-difference representation of the energy equation, given by

Equation (2.122), are

A°

J
I [g(_i i+l 2 N

- % ) -An (K+l) KAy+ j An+ l,j+½ ]

°

I -____ . i+1 _ ¢_) 2 Nj An.(K+I) [KA$+(@j An. l,j-½ ]

C - i 2 i i+l 2
. g F.G. + _(K+I)(N2j A_+ J J An ,j+½ - N2,j_ ½)

i 2_i
D. = (A. + B.) - vv-_g __
J O 3 J

pRE._DING PAGE BLANK NOT FILI_Z:D



271

XI. APPENDIX C: RESULTING COEFFICIENTS BY THE USE OF THE MODIFIED

THOMAS ALGORITHM

A system of block tridiagonal equations, Equation (2.129), is

reduced to a set of bidiagonal equations, Equations (2.131) and (2.132),

by using the modified Thomas algorithm. The coefficients for 2 _ j _ NJ

in Equations (2.131) and (2.132) are given as

, A.
A. = - _i

J Q2

C = _2[Cj - C _I(Bj + E.b.)33 + Ej(cj - Cj_l)]

Hi i * *
= [Hj ] j 3 j-i3 Q2 - H'-I(Bj + E.D.) + Ej(hj - h )]

s; = i--[sj
Q2

0,

aj = AjQ I

- Sj_I(B j + E.b.)]J + Ej(sj - Sj_l) ]

* * * =':

cj = CjQ I + Cj ibj - c. + c- ] j-i

hj = HjQ 1 + H. - h. + hj-lbj ] j-I

* * * ,,

sj = SjQ I + S._ib j - s + sj j j-I

QI = d + A. ibj + a.j ]- j-i

Q2=D +A. +J ] -IBj EjQ 1

The corresponding values at j = 1 are given by Equation (2.133).

_NEC_DFqG PAGE BLANK NOT F|L_'v_ED
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XII. APPENDIX D: TRANSFORMATION FORMULAS USED FOR THE BOUNDARY

CONDITIONS IN THE NUMERICAL GRID GENERATION

The solution procedure for the numerical grid generation was

presented in Section III. C. It required a Dirichlet type boundary

condition at all boundaries of the computational domain. In the

streamwise direction along the body surface, the grid points are

controlled by the transformation formula suggested by Roberts (1971).

where

sinh[al($/$max - a2) ]
x = x {i + }

c sinh(al_2)

I

_2 = 2= I In[

I + (e l)Xc]

1 + (e I+ l)Xc

0<_i<_,

More points are clustered near Xc as the stretching parameter _I becomes

larger. Values of =i closer to zero result in the grid distribution

being close to the equal spacing. The typical value of =i was between 2

and 5. At the outer boundary, the grid spacing was set uniform.

In the normal direction, grid points were concentrated toward the

wall by the use of an exponential stretching type transformation given

as

_IECEu_& _AGE BLANK NOT FIL[_ED
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r=r +

_3+ 1

(o_3 + I) - (c_3 - l)(c( 3 _ 1 )

i- _I

_3 + I

(_3 1) max + 1

i < _3 <-

I fl
n
max

This stretching transformation clusters more points near r = r as theo

stretching parameter _3 approaches unity. A value of _3 much larger

than I produces a mesh with approximately uniform spacing. In this

study, the typical value ranged from 1.05 to I.i.
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XII. APPENDIXE: COEFFICIENTSIN THEFINITE-DIFFERENCE

REPRESENTATIONSUSEDIN THENUMERICALGRIDGENERATION

The Laplace equation which is used to define the coordinate

transformation is discretized by using a second-order-accurate central

differencing scheme. The finite-difference representation of the

Laplace equation in the ADI schemeconstructs two sets of tridiagonal

matrix equations for x and r, Equations (3.41) and (3.42). Since the

coefficients for x and r are almost identical, only the coefficients for

x are described explicitly.

By rearranging the coefficients of the unknownvariables, Equations

(3.41) and (3.42) can be rewritten as

 tep2

where

BX.fn + DX.fn + n = CX (12 I)
i i-l,j 1 1,j AXifi+l,j i

BY.C_ n n
] z,j-i + DY.C. + AY.C. = CY. (12.2)J l,j J 1,j+l J

Cn n+l n
z,j = x. - x. (12.3)z,j z,j

The coefficients in Equations (12.1) and (12.2) for 2 _ i N NI-I

and 2 < j < NJ-I are

AX. = BX. = -A_
1 1 l,j

DX. = _ + 2An
i l_j
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CX = _Lx_
i l,j

AY. = BY. = -C_
j j 1,j

DY. = _ + 2C n
j 1,j

CY. = fn
j 1,j

At the surrounding boundaries of the computational domain, the

Dirichlet boundary condition is prescribed. Therefore, the coefficients

in Equations (12.1) and (12.2) at the boundaries are

AX I = BX I = CX I = AXNI = BXNI = CXNI = 0

DX I = DXNI = 1.0

AY I = BY 1 = CY I = AYNj = BYNj = CYNj = 0

DY I = DYNj = 1.0

In the above expressions, AS and &n are omitted because AS = A_ = 1.0

everywhere. The coefficients in the matrix equation for r is easily

obtained by simply replacing the f_
1,j

n

and x with gi,j and r,

respectively, from the expressions for the above coefficients.
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XIII. APPENDIXF: COEFFICIENTSIN THEFINITE-DIFFERENCEREPRESENTATION

OFTHEPOTENTIALEQUATIONOBTAINEDBYTHESLORSCHEME

The resulting coefficients in the tridiagonal matrix equations,

Equation (3.81), obtained from the full potential equation by using the

SLORschemeare given as follows.

For 2 N j _ NJ-I at ith streamwise station,

A
J

B
J

= [A2i,j6$(_r)i+½ + Rj]

= A2i,j6_(_r)i+ ½ - R.j-1

D
J

=R +R +R. +R.
i i-i j j-i

E
3

n + d.C n
= bjCi-l,j-i j 1-l,j

Cn n
+ aj i-l,j+l + _L_i,j

a
J = - _[(_r)i_½,jA2i_l, j + (Pr)i,j+½A2i,j+ I]

b
3 = m[(_r)i_½,jA2i_l, j + (Pr)i,j_½A2i,j_ I]

d. = m[Ri_ -A2 6 (pr) ]j i i,j n i,j+½

where

A2. i A2
1,j = 4 (J-)i,j (13.1)

and R. and R. are given by Equation (3.79).
I 3

At the outer boundary, j = NJ, the potential is fixed by the

freestream value. Therefore, Ci,Njn = 0. The corresponding

coefficients are given as
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ANj = BNj = ENj = 0

DNj = 1.0

At the wall surface, j = i, the transpiration velocity boundary

condition is prescribed. The resulting coefficients are

AI = - 8rR 1

B I = 0

D 1 = A4 i + A4i_ I + 8rR 1

= dlCn + al Cn_ + mL¢ n,E1 -i,i 1,2 i

= _A2al - _Sr(Pr)i, i+2 1,2

d I = w[A4i_ I - 8r(Pr)i,l+½A2i, I]

where

A 2

AI "2 )
A4 i = [(_r)(-3= - A3 J ]

8 = i + ri'l-½

r r i, i+½

A closer look at L_i, I

dm /d$ as follows.

i+½, i

reveals the new relation between E 1 and

(13.2)

(13.3)

* . 9:

dm dm +e 3 dmE 1 = e 0 + el(d_--)i_ ½ + e2(d_-) i (d-_-)i+½
(13.4)
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_s J

where

n + n
e0 = dlCi_l, I alCi-l,2

+_[_$A4i_$ + 8r(_r)i,l+½( 1 + E+I)85_ + 8rR18]_ _ni,l

e I = - _A5i_l(_)i_½, I

e2 = - 2_ ri'l-_(_)
ri, I p i,l

N

_)
e3 = wA5i(p i+½,1

and

A5 i = (_--23)i+½,I
(13.5)

By eliminating the upper diagonal terms using a standard Thomas

algorithm, Equation (3.81) becomes the bidiagonal recurrence

relationships, given by Equation (3.82). The coefficients of Equation

(3.82) are given as

pj = Ej / D.3

e,

qj =- B. /D.3 3

D. =D A /
J J jBj+I Dj+I

E =E -A.E /
j j ; j+l Dj+I
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As given by Equation (3.83), the coefficient Pl can be more specific in
.t.
s,

terms of dm /d_ using the relation given by Equation (13.4). The

coefficients of Equation (3.83) are then given as

PI0 = [e0 " AIE2 / D2] / DI

_'_ -@ _,_

Pll = el / D1 PI2 = e2 / D1 PI3 = e3 / DI
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XIV. APPENDIXG: COEFFICIENTSIN THEFINITE-DIFFERENCEREPRESENTATION

OFTHEPOTENTIALEQUATIONOBTAINEDBY THEAF2 SCHEME

The AF2 schemeconsists of a two-step procedure. Whenthe main

flow direction is along the positive $ direction, coefficients in

Equations (3.88) and (3.89) are given as

bj = -Rj_ I

dj = (= + Rj)

ej = =_L¢_,j

A, .l_ -R.

1 1

B.j.=- (=X + R.___I)

D.x = c( + c(_ + R.z + Ri-i

= fn + _Cn
Ei z,j z,j+l

When the flow is in the negative $ direction, A0 and B. change based on
1 1

the windward differencing scheme. In such a case,

A. = - (=_ + R.)
3 I

B, _ -- R.

.] i-1

I F__

Q


